Alcohol use disorder (AUD) is a multifactorial disease closely related to neurodevelopment and environmental factors that influence behavior. This study explored the relationships between brain volume and behavior from an Exploratory Structural Equation Modeling (ESEM) based on the Research Domain Criteria. High-resolution magnetic resonance imaging scans were acquired from recent patients with AUD (n = 50) and healthy controls (HC=50).
View Article and Find Full Text PDFJ Mech Behav Biomed Mater
December 2024
Background: Magnesium (Mg) and its alloys are promising candidates for biodegradable materials in next-generation bone implants due to their favourable mechanical properties and biodegradability. However, their rapid degradation and corrosion, potentially leading to toxic byproducts, pose significant challenges for widespread use.
Objectives: This study aimed to address the challenges associated with Mg-based materials by thoroughly evaluating the biocompatibility, genotoxicity, and mechanical properties of Mg-based devices manufactured via Single Point Incremental Forming (SPIF).
In this perspective we deal with the challenge of investigating nuclear quantum effects in solvated and condensed phase molecular systems in a computationally affordable way. To this end, semiclassical methods are promising theoretical approaches, as we demonstrate through vibrational spectroscopy and reaction kinetics. We show that quantum vibrational features can be found in hydrates of carbonyl compounds and microsolvated amino acids, and we report quantum estimates of the low-temperature reaction rate constant of a unimolecular reaction taking place in a noble-gas matrix.
View Article and Find Full Text PDFHydrocarbons are the central feedstock of fuels, solvents, lubricants, and the starting materials for many synthetic materials, and thus the physical properties of hydrocarbons have received intense study. Among these, the molecular flexibility and the power and infrared spectroscopies are the focus of this paper. These are examined for the linear alkane CH using molecular dynamics (MD) calculations and recent machine-learned potentials.
View Article and Find Full Text PDFStimuli-responsive nanocomposite gels combine the unique properties of hydrogels with those of nanoparticles, thus avoiding the suboptimal results of single components and creating versatile, multi-functional platforms for therapeutic and diagnostic applications. These hybrid materials are engineered to respond to various internal and external stimuli, such as temperature, pH, light, magnetic fields, and enzymatic activity, allowing precise control over drug release, tissue regeneration, and biosensing. Their responsiveness to environmental cues permits personalized medicine approaches, providing dynamic control over therapeutic interventions and real-time diagnostic capabilities.
View Article and Find Full Text PDF