Publications by authors named "R Lingham"

Intracellular delivery of therapeutic antibodies is highly desirable but remains a challenge for biomedical research and the pharmaceutical industry. Approximately two-thirds of disease-associated targets are found inside the cell. Difficulty blocking these targets with available drugs creates a need for technology to deliver highly specific therapeutic antibodies intracellularly.

View Article and Find Full Text PDF

Objective: Insulin resistance is a key feature of Type 2 Diabetes (T2D), and improving insulin sensitivity is important for disease management. Allosteric modulation of the insulin receptor (IR) with monoclonal antibodies (mAbs) can enhance insulin sensitivity and restore glycemic control in animal models of T2D.

Methods: A novel human mAb, IRAB-A, was identified by phage screening using competition binding and surface plasmon resonance assays with the IR extracellular domain.

View Article and Find Full Text PDF

The discovery of novel 4-hydroxy-2-(heterocyclic)pyrimidine-5-carboxamide inhibitors of hypoxia-inducible factor (HIF) prolyl hydroxylases (PHD) is described. These are potent, selective, orally bioavailable across several species, and active in stimulating erythropoiesis. Mouse and rat studies showed hematological changes with elevations of plasma EPO and circulating reticulocytes following single oral dose administration, while 4-week q.

View Article and Find Full Text PDF

A hallmark of type 2 diabetes is impaired insulin receptor (IR) signaling that results in dysregulation of glucose homeostasis. Understanding the molecular origins and progression of diabetes and developing therapeutics depend on experimental models of hyperglycemia, hyperinsulinemia, and insulin resistance. We present a novel monoclonal antibody, IRAB-B, that is a specific, potent IR antagonist that creates rapid and long-lasting insulin resistance.

View Article and Find Full Text PDF

Insulin receptor signaling is a complex cascade leading to a multitude of intracellular functional responses. Three natural ligands, insulin, IGF1 and IGF2, are each capable of binding with different affinities to the insulin receptor, and result in variable biological responses. However, it is likely these affinity differences alone cannot completely explain the myriad of diverse cellular outcomes.

View Article and Find Full Text PDF