Publications by authors named "R Lestienne"

Synchronization of spikes carried by the visual streams is strategic for the proper binding of cortical assemblies, hence for the perception of visual objects as coherent units. Perception of a complex visual scene involves multiple trains of gamma oscillations, coexisting at each stage in visual and associative cortex. Here, we analyze how this synchrony is managed, so that the perception of each visual object can emerge despite this complex interweaving of cortical activations.

View Article and Find Full Text PDF

Recent studies have shown that the insect olfactory system uses a spatio-temporal encoding of odours in the population of projection neurons in the antennal lobe, and suggest that the information thus coded is spread across a large population of Kenyon cells in the mushroom bodies. At this stage, the temporal part of the code might be transformed into a spatial code, especially via the temporally sensitive mechanisms of paired-pulse facilitation and feedback inhibition with its possible associated rebound. We explore here a simple model of the olfactory system using a three-layer network of formal neurons, comprising a fixed number (three) of projection and inhibitory neurons, but a variable number of Kenyon cells.

View Article and Find Full Text PDF

To what extent is the variability of the neuronal responses compatible with the use of spike timing for sensory information processing by the central nervous system? In reviewing the state of the art of this question, I first analyze the characteristics of this variability with its three elements: synaptic noise, impact of ongoing activity and possible fluctuations in evoked responses. I then review the recent literature on the various sensory modalities: somato-sensory, olfactory, gustatory and visual and auditory processing. I emphasize that the conditions in which precise timing, at the millisecond level, is usually obtained, are conditions that usually require dynamic stimulation or sharp changes in the stimuli.

View Article and Find Full Text PDF

Many studies in recent years have been devoted to the detection of fast oscillations in the Central Nervous System (CNS), interpreting them as synchronizing devices. We should, however, refrain from associating too closely the two concepts of synchronization and oscillation. Whereas synchronization is a relatively well-defined concept, by contrast oscillation of a population of neurones in the CNS looks loosely defined, in the sense that both its frequency sharpness and the duration of the oscillatory episodes vary widely from case to case.

View Article and Find Full Text PDF

Recent work on the insect olfactory system has shown that its mushroom bodies (one of its major components) are involved in the fine discrimination of odours and that the temporal organisation of spike discharges plays a fundamental role. We propose here a model of a network that is able to decode the temporal patterns which characterise an odour. This model has three fundamental properties that seem to exist in all mushroom bodies of insects studied so far: a) long lasting inhibitions with rebounds, able to facilitate delayed spike generation; b) synaptic plasticity, which allows the network to learn to recognise temporal patterns; c) above all a large interconnection, which allows this network to recognise intervals of various duration.

View Article and Find Full Text PDF