This paper describes and validates an algorithm to solve optimal control problems for agent-based models (ABMs). For a given ABM and a given optimal control problem, the algorithm derives a surrogate model, typically lower-dimensional, in the form of a system of ordinary differential equations (ODEs), solves the control problem for the surrogate model, and then transfers it back to the original ABM. It applies to quite general ABMs and offers several options for the ODE structure, depending on what information about the ABM is to be used.
View Article and Find Full Text PDFDigital twins represent a key technology for precision health. Medical digital twins consist of computational models that represent the health state of individual patients over time, enabling optimal therapeutics and forecasting patient prognosis. Many health conditions involve the immune system, so it is crucial to include its key features when designing medical digital twins.
View Article and Find Full Text PDFDigital twin technology, pioneered for engineering applications, is being adapted to biomedicine and healthcare; however, several problems need to be solved in the process. One major problem is that of dynamically calibrating a computational model to an individual patient, using data collected from that patient over time. This kind of calibration is crucial for improving model-based forecasts and realizing personalized medicine.
View Article and Find Full Text PDFBackground: Racial disparities in COVID-19 incidence and outcomes have been widely reported. Non-Hispanic Black patients endured worse outcomes disproportionately compared with non-Hispanic White patients, but the epidemiological basis for these observations was complex and multifaceted.
Objective: This study aimed to elucidate the potential reasons behind the worse outcomes of COVID-19 experienced by non-Hispanic Black patients compared with non-Hispanic White patients and how these variables interact using an explainable machine learning approach.