Unlabelled: Sequencing DNA directly from patient samples enables faster pathogen characterization compared to traditional culture-based approaches, but often yields insufficient sequence data for effective downstream analysis. CRISPR-Cas9 enrichment is designed to improve the yield of low abundance sequences but has not been thoroughly explored with Oxford Nanopore Technologies (ONT) for use in clinical bacterial epidemiology. We designed CRISPR-Cas9 guide RNAs to enrich the human pathogen , by targeting multi-locus sequence type (MLST) and transfer RNA (tRNA) genes, as well as common antimicrobial resistance (AMR) genes and the resistance-associated integron gene .
View Article and Find Full Text PDFInterpreting the phenotypes of alleles in genomes is complex. Whilst all strains are expected to carry a chromosomal copy conferring resistance to ampicillin, they may also carry mutations in chromosomal alleles or additional plasmid-borne alleles that have extended-spectrum β-lactamase (ESBL) activity and/or β-lactamase inhibitor (BLI) resistance activity. In addition, the role of individual mutations/a changes is not completely documented or understood.
View Article and Find Full Text PDFIt is now possible to assemble near-perfect bacterial genomes using Oxford Nanopore Technologies (ONT) long reads, but short-read polishing is usually required for perfection. However, the effect of short-read depth on polishing performance is not well understood. Here, we introduce Pypolca (with default and careful parameters) and Polypolish v0.
View Article and Find Full Text PDFImprovements in the accuracy and availability of long-read sequencing mean that complete bacterial genomes are now routinely reconstructed using hybrid (i.e. short- and long-reads) assembly approaches.
View Article and Find Full Text PDF