Publications by authors named "R L Stillwell"

Achieving negative surgical margins, defined as no tumor found on the edges of the resected tissue, during lumpectomy for breast cancer is critical for mitigating the risk of local recurrence. To identify nonpalpable tumors that cannot be felt, pre-operative placements of wire and wire-free localization devices are typically employed. Wire-free localization approaches have significant practical advantages over wired techniques.

View Article and Find Full Text PDF

We demonstrate thermodynamic profile estimation with data obtained using the MicroPulse DIAL such that the retrieval is entirely self contained. The only external input is surface meteorological variables obtained from a weather station installed on the instrument. The estimator provides products of temperature, absolute humidity and backscatter ratio such that cross dependencies between the lidar data products and raw observations are accounted for and the final products are self consistent.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigates the use of penalized likelihood estimation for analyzing sparse photon counting data from distributed target lidar systems.
  • By adapting the Poisson Total Variation technique, the researchers produce denoised estimates of backscatter photon flux while maintaining high temporal (50 Hz) and range (75 cm) resolutions.
  • The proposed method shows better accuracy in signal recovery compared to traditional histogram-based methods, based on both simulated and real-world 2D atmospheric data.
View Article and Find Full Text PDF

Sex and gender inclusion are crucial in bringing COVID-19 to an end and preventing the next pandemic. Despite this, almost all research studies on COVID-19 and clinical trials of vaccines do not include data on women. How can we combat the pandemic if half of the human population is left out of COVID-19 research? The life-long consequences of this neglect could be severe for women all over the world, particularly with the emergence of new variants that could exaggerate sex differences even further.

View Article and Find Full Text PDF

Frequency-domain near-infrared spectroscopy (FD-NIRS) provides quantitative noninvasive measurements of tissue optical absorption and scattering, as well as a safe and accurate method for characterizing tissue composition and metabolism. However, the poor scalability and high complexity of most FD-NIRS systems assembled to date have contributed to its limited clinical impact. To address these shortcomings, we present a scalable, digital-based FD-NIRS platform capable of measuring optical properties and tissue chromophore concentrations in real-time.

View Article and Find Full Text PDF