The frequency of plastic debris entering agricultural land is likely going to increase due to increased discharge into surface waters and more frequent flood events. Microbial biofilm on the surfaces of plastic pollution (known as the 'plastisphere') in freshwater environments often includes human pathogenic bacteria capable of causing disease. Pathogens have been detected on the surface of plastics in freshwater environments, but it is yet to be determined whether plastic debris can also transport pathogens into agricultural fields during flooding.
View Article and Find Full Text PDFMicroplastic (MP) pollution poses a global threat to urban and rural environments and can have negative effects on a range of organisms. Mosquito larvae often breed in water contaminated with MPs, and given their important role as disease vectors, understanding the effects of larval exposure to MPs is critical for understanding the potential impact on their life history traits and subsequent methods for their control. Here, we have exposed first instar larvae of Anopheles gambiae s.
View Article and Find Full Text PDFJ Hazard Mater
November 2024
Microbial biofilms on environmental plastic pollution can serve as a reservoir for both pathogenic and commensal bacteria. Associating with this 'plastisphere', provides a mechanism for the wider dissemination of pathogens within the environment and a greater potential for human exposure. For pathogens to bind to environmental plastic waste they need to be in close contact with it; therefore, understanding how rapidly pathogens can bind to plastics and the temporal colonisation dynamics of the continual cycling between the plastisphere and the environment are important factors for quantifying the persistence of human pathogens.
View Article and Find Full Text PDFMuch of our knowledge about the phytoremediation potential of floating treatment wetlands (FTWs) comes from studies focusing on the removal of single pollutants, often by a single plant species. Here, we quantify the potential of FTWs planted with varying proportions of the emergent monocots Typha latifolia, Glyceria maxima, and Phragmites australis to simultaneously remove a suite of eleven nutrient/metalloid pollutants. Pollutants most readily removed from water included total inorganic nitrogen (TIN), K and Mn, whilst P, Zn and Cu showed a moderate removal efficiency, and Mg, Ca, Na, Cr, and Fe were poorly removed.
View Article and Find Full Text PDF