We report an intra-cavity frequency doubled diamond Raman laser operating at 607 nm. A z-fold cavity design was configured to prevent back reflections into the fiber amplifier, which avoided the use of isolators in the pump beam path. A maximum output power of 60 W was generated in two output beams at an optical conversion efficiency of 28% from the 1045 nm pump.
View Article and Find Full Text PDFThe relative intensity noise (RIN) characteristics of a continuous-wave diamond Raman laser are investigated for the first time. The results reveal the parasitic stimulated Brillouin scattering (SBS) that usually occurred with higher-order spatial modes in the diamond Raman resonator is a pivotal factor impacting the Raman longitudinal modes and deteriorating the RIN level. The diamond Raman laser automatically switches to single-longitudinal-mode operation and the RIN level is significantly decreased in the frequency range of 200 Hz to 1 MHz after the parasitic SBS is effectively suppressed through inserting a spatial aperture or a χ nonlinear crystal into the cavity.
View Article and Find Full Text PDFWe report an investigation into secondary mode suppression in single longitudinal mode (SLM) 1240 nm diamond Raman lasers. For a three-mirror V-shape standing-wave cavity incorporating an intra-cavity LBO crystal to suppress secondary modes, we achieved stable SLM output with a maximum output power of 11.7 W and a slope efficiency 34.
View Article and Find Full Text PDFTo maintain stable posture of the head and body during our everyday activities, the brain integrates information across multiple sensory systems. Here, we examined how the primate vestibular system, independently and in combination with visual sensory input, contributes to the sensorimotor control of head posture across the range of dynamic motion experienced during daily life. We recorded activity of single motor units in the splenius capitis and sternocleidomastoid muscles in rhesus monkeys during yaw rotations spanning the physiological range of self-motion (up to 20 Hz) in darkness.
View Article and Find Full Text PDFFree-space Brillouin lasers (BLs) are capable of generating high-power, narrow-linewidth laser outputs at specific wavelengths. Although there have been impressive experimental demonstrations of these lasers, there is an absence of a corresponding theory that describes the dynamic processes that occur within them. This paper presents a time-independent analytical model that describes the generation of the first-order Stokes field within free-space BLs.
View Article and Find Full Text PDF