Previous studies from our laboratory have shown that environmental enrichment (EE) in young rats results in improved learning ability and enhanced metabotropic glutamate receptor-dependent long-term potentiation (mGluR-dependent LTP) resulting from sustained activation of p70S6 kinase. Here, we investigated whether 1-month EE is sufficient to improve hippocampus-dependent learning and memory and enhance hippocampal LTP in 23-24 month-old Fischer 344 male rats. Aged rats were housed in environmentally enriched, socially enriched, or standard housing conditions.
View Article and Find Full Text PDFThe import of acetyl-CoA into the lumen of the endoplasmic reticulum (ER) by AT-1/SLC33A1 regulates Nε-lysine acetylation of ER-resident and -transiting proteins. Specifically, lysine acetylation within the ER appears to influence the efficiency of the secretory pathway by affecting ER-mediated quality control. Mutations or duplications in AT-1/SLC33A1 have been linked to diseases such as familial spastic paraplegia, developmental delay with premature death, and autism spectrum disorder with intellectual disability.
View Article and Find Full Text PDFAs the population of people aged 60 or older continues to rise, it has become increasingly important to understand the molecular basis underlying age-related cognitive decline. In fact, a better understanding of aging biology will help us identify ways to maintain high levels of cognitive functioning throughout the aging process. Many cellular and molecular aspects of brain aging are shared with other organ systems; however, certain age-related changes are unique to the nervous system due to its structural, cellular and molecular complexity.
View Article and Find Full Text PDFThe aberrant accumulation of toxic protein aggregates is a key feature of many neurodegenerative diseases, including Huntington's disease, amyotrophic lateral sclerosis and Alzheimer's disease. As such, improving normal proteostatic mechanisms is an active target for biomedical research. Although they share common pathological features, protein aggregates form in different subcellular locations.
View Article and Find Full Text PDFPrevious studies from our lab have demonstrated that mild cognitive impairments identified early in life are predictive of cognitive deficits that develop with age, suggesting that enhancements in cognition at an early age can provide a buffer against age-related cognitive decline. Environmental enrichment has been shown to improve learning and memory in the rodent, but the impact of enrichment on synaptic plasticity and the molecular mechanisms behind enrichment are not completely understood. To address these unresolved issues, we have housed 2-month old rats in environmentally enriched (EE), socially enriched (SE), or standard housing (SC) and conducted tests of learning and memory formation at various time intervals.
View Article and Find Full Text PDF