Publications by authors named "R L Chelvarajan"

Equine arteritis virus (EAV) is the causative agent of equine viral arteritis (EVA), a respiratory, systemic, and reproductive disease of horses and other equid species. Following natural infection, 10-70% of the infected stallions can become persistently infected and continue to shed EAV in their semen for periods ranging from several months to life. Recently, we reported that some stallions possess a subpopulation(s) of CD3+ T lymphocytes that are susceptible to in vitro EAV infection and that this phenotypic trait is associated with long-term carrier status following exposure to the virus.

View Article and Find Full Text PDF

Strains of equine arteritis virus (EAV) differ in their virulence phenotypes, causing anywhere from subclinical infections to severe disease in horses. Here, we describe the in silico design and de novo synthesis of a full-length infectious cDNA clone of the horse-adapted virulent Bucyrus strain (VBS) of EAV encoding mCherry along with in vitro characterization of the progeny virions (EAV sVBSmCherry) in terms of host-cell tropism, replicative capacity and stability of the mCherry coding sequences following sequential passage in cell culture. The relative stability of the mCherry sequence during sequential cell culture passage coupled with a comparable host-cell range phenotype (equine endothelial cells, CD3(+) T cells and CD14(+) monocytes) to parental EAV VBS suggest that EAV-sVBSmCherry-derived virus could become a valuable research tool for identification of host-cell tropism determinants and for characterization of the viral proteins involved in virus attachment and entry into different subpopulations of peripheral blood mononuclear cells.

View Article and Find Full Text PDF

YopM is one of the six "effector Yops" of the human-pathogenic Yersinia, but its mechanism has not been defined. After delivery to J774A.1 monocyte-like cells, YopM can rapidly bind and activate the serine/threonine kinases RSK1 and PRK2.

View Article and Find Full Text PDF

Background: The pathogenesis of inflammatory bowel disease (IBD) is complex and the need to identify molecular biomarkers is critical. Epithelial cells play a central role in maintaining intestinal homeostasis. We previously identified five "signature" biomarkers in colonic epithelial cells (CEC) that are predictive of disease phenotype in Crohn's disease.

View Article and Find Full Text PDF

Age-associated defects in both B-lymphocytes and macrophages in elderly result in a reduction in the efficacy of vaccines to many Gram positive bacteria like Streptococcus pneumoniae. Splenic macrophages from aged mice have been shown to have a defect in production of pro-inflammatory cytokines (IL-6, IL-12, IL-1β, TNF-α) but exhibit increased production of IL-10 upon TLR-4 ligation. Here we showed that aged macrophages demonstrate similar cytokine dysregulation phenotype upon stimulation with TLR-2 ligands, or killed S.

View Article and Find Full Text PDF