Publications by authors named "R L Brisbin"

We investigate the effect of bis(imino)pyridine (BIP) ligands in guiding self-assembly of semiconducting CdSe/ZnS quantum dots (QDs) into three-dimensional multi-layered shells with diameters spanning the entire mesoscopic range, from 200 nm to 2 μm. The assembly process is directed by guest-host interactions between the BIP ligands and a thermotropic liquid crystal (LC), with the latter's phase transition driving the process. Characterization of the shell structures, through scanning electron microscopy and dynamic light scattering, demonstrates that the average shell diameter depends on the BIP structure, and that changing one functional group in the chemical scaffold allows systematic tuning of shell sizes across the entire range.

View Article and Find Full Text PDF

Rapid, sensitive and specific detection and reporting of infectious pathogens is important for patient management and epidemic surveillance. We demonstrated a point-of-care system integrated with a smartphone for detecting live virus from nasal swab media, using a panel of equine respiratory infectious diseases as a model system for corresponding human diseases such as COVID-19. Specific nucleic acid sequences of five pathogens were amplified by loop-mediated isothermal amplification on a microfluidic chip and detected at the end of reactions by the smartphone.

View Article and Find Full Text PDF

New tools are needed to enable rapid detection, identification, and reporting of infectious viral and microbial pathogens in a wide variety of point-of-care applications that impact human and animal health. We report the design, construction, and characterization of a platform for multiplexed analysis of disease-specific DNA sequences that utilizes a smartphone camera as the sensor in conjunction with a hand-held "cradle" that interfaces the phone with a silicon-based microfluidic chip embedded within a credit-card-sized cartridge. Utilizing specific nucleic acid sequences for four equine respiratory pathogens as representative examples, we demonstrated the ability of the system to utilize a single 15 μL droplet of test sample to perform selective positive/negative determination of target sequences, including integrated experimental controls, in approximately 30 min.

View Article and Find Full Text PDF

Background: Drug delivery to the brain is a major roadblock to treatment of Alzheimer's disease. Recent results of the PRIME study indicate that increasing brain penetration of antibody drugs improves Alzheimer's treatment outcomes. New approaches are needed to better accomplish this goal.

View Article and Find Full Text PDF