Publications by authors named "R L Barchi"

Ion channels are complex proteins that span the lipid bilayer of the cell membrane, where they orchestrate the electrical signals necessary for normal function of the central nervous system, peripheral nerve, and both skeletal and cardiac muscle. The role of ion channel defects in the pathogenesis of numerous disorders, many of them neuromuscular, has become increasingly apparent over the last decade. Progress in molecular biology has allowed cloning and expression of genes that encode channel proteins, while comparable advances in biophysics, including patch-clamp electrophysiology and related techniques, have made the study of expressed proteins at the level of single channel molecules possible.

View Article and Find Full Text PDF

Academic medicine and research universities have enjoyed a close relationship that has strengthened both, spawning an era of discovery and scholarship in medicine that has earned the U.S. academic medical enterprise a high level of public trust and a deserved leadership position in the world.

View Article and Find Full Text PDF

In rats treated with high-dose corticosteroids, skeletal muscle that is denervated in vivo (steroid-denervated) develops electrical inexcitability similar to that seen in patients with acute quadriplegic myopathy. To determine whether changes in muscle gene transcription might underlie inexcitability of steroid-denervated muscle we performed RNase protection assays to quantitate adult (SkM1) and embryonic (SkM2) sodium channel isoforms and chloride channel (CLC-1) mRNA levels in control, denervated, steroid-innervated, and steroid-denervated skeletal muscle. While SkM1 mRNA levels were relatively unaffected by denervation or steroid treatment, SkM2 mRNA levels were increased by both.

View Article and Find Full Text PDF

cis-Elements in the -129/+124 promoter segment of the rat tetrodotoxin-resistant voltage-gated sodium channel (rSkM2) gene that are responsible for reporter gene expression in cultured muscle cells were identified by deletion and scanning mutations. Nested 5' deletion constructs, assayed in L6 myotubes and NIH3T3 cells, revealed that the minimum promoter allowing muscle-specific expression is contained within the -57 to +1 segment relative to the major transcription initiation site. In the context of the -129/+1 construct, however, scanning mutations in the -69/+1 segment failed to identify any critical promoter elements.

View Article and Find Full Text PDF