Publications by authors named "R Kupferman"

The study of elastic membranes carrying topological defects has a longstanding history, going back at least to the 1950s. When allowed to buckle in three-dimensional space, membranes with defects can totally relieve their in-plane strain, remaining with a bending energy, whose rigidity modulus is small compared to the stretching modulus. In this paper we study membranes with a single edge dislocation.

View Article and Find Full Text PDF

In this paper, we introduce a methodology applicable to a wide range of localized two-dimensional sources of stress. This methodology is based on a geometric formulation of elasticity. Localized sources of stress are viewed as singular defects-point charges of the curvature associated with a reference metric.

View Article and Find Full Text PDF

We study the geometry of defects in amorphous materials and their elastic interactions. Defects are defined and characterized by deviations of the material's intrinsic metric from a Euclidian metric. This characterization makes possible the identification of localized defects in amorphous materials, the formulation of a corresponding elastic problem, and its solution in various cases of physical interest.

View Article and Find Full Text PDF

A thin sheet of nematic elastomer attains 3D configurations depending on the nematic director field upon heating. In this Letter, we describe the intrinsic geometry of such a sheet and derive an expression for the metric induced by general nematic director fields. Furthermore, we investigate the reverse problem of constructing a director field that induces a specified 2D geometry.

View Article and Find Full Text PDF

Under a proper assignment of a metric and a connection, the (classical) dynamical trajectories can be identified as geodesics of the underlying manifold. We show how these geometric structures can be derived; specifically, we construct them explicitly for configuration and phase spaces of Hamiltonian systems. We demonstrate how the correspondence between geometry and dynamics can be applied to study the conserved quantities of a dynamical system.

View Article and Find Full Text PDF