Publications by authors named "R Krishna Chandran"

Article Synopsis
  • A blood biomarker panel including GFAP and UCH-L1 can potentially replace head CT scans for certain patients with traumatic brain injury (TBI), as it shows high sensitivity and negative predictive values.
  • In a study with 1,899 TBI patients, the panel accurately identified the presence of traumatic intracranial injury in most cases, with a low false-negative rate.
  • The core lab-based platform allows for rapid analysis of multiple samples, which is particularly useful in urgent situations like mass casualty events or busy emergency departments.
View Article and Find Full Text PDF

Lysosomes and related precursor organelles robustly build up in swollen axons that surround amyloid plaques and disrupted axonal lysosome transport has been implicated in worsening Alzheimer's pathology. Our prior studies have revealed that loss of Adaptor protein-4 (AP-4) complex function, linked primarily to Spastic Paraplegia (HSP), leads to a similar build of lysosomes in structures we term "AP-4 dystrophies". Surprisingly, these AP-4 dystrophies were also characterized by enrichment of components of APP processing machinery, β-site cleaving enzyme 1 (BACE1) and Presenilin 2.

View Article and Find Full Text PDF

Nano-formulation has generated attention in the battle against cancer, because of its great flexibility, reduced adverse side effects, and accuracy in delivering drugs to target tissues dependent on the size and surface characteristics of the disease. The field of photodynamic treatment has advanced significantly in the past years. Photodynamic techniques that use nano-formulations have surfaced to further the field of nanotechnology in medicine, especially in cancer treatment.

View Article and Find Full Text PDF

In recent times, oesophageal cancer has been listed as the eleventh most prevalent type of cancer. It is a lethal disease attributed to a high mortality rate, tumour metastasis and poor treatment outcome. A subset of oesophageal cancer referred to as stem cells (CSCs) has been revealed to drive carcinogenesis, metastasis, and treatment failure.

View Article and Find Full Text PDF

Hypocrellin-based photodynamic therapy (PDT) is developing as a viable cancer therapeutic option, especially when enhanced by nanoconjugation. This review investigates the methods by which nano-conjugated hypocrellin enhances therapeutic efficacy and precision when targeting cancer cells. These nanoconjugates encapsulate or covalently bind hypocrellin photosensitizers (PSs), allowing them to accumulate preferentially in malignancies.

View Article and Find Full Text PDF