Expert Opin Drug Deliv
July 2007
The polymer-based Medusa system (Flamel Technologies) has been designed for slow release of therapeutic proteins and peptides. The Medusa II consists of a poly L-glutamate backbone grafted with hydrophobic alpha-tocopherol molecules, creating a colloidal suspension of nanoparticles (10 - 50 nm) in water. The sustained drug release is based on reversible drug interactions with hydrophobic nanodomains within the nanoparticles.
View Article and Find Full Text PDFNew cationic nanoparticles (SMBV) were evaluated for use as a nasal vaccine delivery system for two recombinant proteins: HBsAg and beta-galactosidase. Each protein was formulated with SMBV and intranasally administrated to non-anesthetized mice. In each model, the formulated protein induced high levels of specific serum IgG antibodies and cytotoxic T lymphocyte (CTL) responses.
View Article and Find Full Text PDFBackground: Human cytomegalovirus (HCMV) infection and reactivation following allogeneic bone marrow transplantation is a major source of complications in grafted patients including pneumonitis, graft rejection and even death. Adoptive immunotherapy consisting in transfer of CD4(+) and CD8(+) T cells directed against HCMV has proved its worth. Nevertheless, established procedures have to be improved in terms of safety and waiting period required to obtain specific T cells.
View Article and Find Full Text PDFPurpose: Supramolecular Biovectors (SMBV) consist of cross-linked cationic nanoparticles surrounded by a lipid membrane. The purpose was to study the structure of the lipid membrane and to characterise its interaction with the nanoparticles in order to differentiate SMBV from other polymer/lipid associations.
Methods: The interaction of lipids with the nanoparticle surface was studied using zeta potential.
New therapeutic strategies are now being developed against adenocarcinoma associated with erbB-2 amplification, particularly by inhibiting p185erbB-2 expression. Antisense oligodeoxynucleotides seem promising for this purpose as long as they are efficiently protected against degradation and targeted into the cells. We present antisense oligonucleotide carriers, the supramolecular biovectors (SMBVs), for which we have already demonstrated the ability to improve both cellular uptake and protection of oligodeoxynucleotide.
View Article and Find Full Text PDF