The deposition characteristics in lungs following inhalation, the potential toxic effects induced and the toxicokinetic fate including a possible translocation to other sites of the body are predominantly determined by the agglomeration status of nanoscaled primary particles. Systemic particle effects, i.e.
View Article and Find Full Text PDFBackground: Inhibitory effects of roflumilast on responses characteristic of allergic asthma were investigated in a fungal asthma model in BALB/c mice.
Methods: Mice were sensitized with Aspergillus antigen (Afu) and exposed to Afu or vehicle, and given roflumilast 1 or 5 mg/kg. Early airway response (EAR) and late airway hyperresponsiveness (AHR) to methacholine were measured via plethysmography.
Aim: Non-invasive analysis of tidal expiratory flow parameters such as Tme/TE (time needed to reach peak expiratory flow divided by total expiratory time) or midexpiratory tidal flow (EF50) has been shown useful for phenotypic characterization of lung function in humans and animal models. In this study, we aimed to compare the utility of two non-invasive measures, EF50 and Tme/TE, to monitor bronchoconstriction to inhaled cholinergic and allergic challenges in Brown-Norway rats.
Methods: Non-invasive measurements of Tme/TE and EF50 were paralleled by invasive recordings of Tme/TE, EF50 and pulmonary conductance (GL).
Background: This study seeks to compare the ability of repeatable invasive and noninvasive lung function methods to assess allergen-specific and cholinergic airway responsiveness (AR) in intact, spontaneously breathing BALB/c mice.
Methods: Using noninvasive head-out body plethysmography and the decrease in tidal midexpiratory flow (EF50), we determined early AR (EAR) to inhaled Aspergillus fumigatus antigens in conscious mice. These measurements were paralleled by invasive determination of pulmonary conductance (GL), dynamic compliance (Cdyn) and EF50 in another group of anesthetized, orotracheally intubated mice.