Nemaline myopathy (NM) is a heterogeneous genetic neuromuscular disorder characterized by rod bodies in muscle fibers resulting in multiple complications due to muscle weakness. NM patients and their families could benefit from genetic analysis for early diagnosis, carrier and prenatal testing; however, clinical classification of variants is subject to change as further information becomes available. Reclassification can significantly alter the clinical management of patients and their families.
View Article and Find Full Text PDFAminoglycoside antibiotic exposure can result in ototoxicity and irreversible hearing loss among individuals that harbor the m.1555A>G variant in the mitochondrial 12S rRNA gene, MT-RNR1. Importantly, pre-emptive m.
View Article and Find Full Text PDFTo develop a novel pharmacogenetic genotyping panel, a multidisciplinary team evaluated available evidence and selected 29 genes implicated in interindividual drug response variability, including 130 sequence variants and additional copy number variants (CNVs). Of the 29 genes, 11 had guidelines published by the Clinical Pharmacogenetics Implementation Consortium. Targeted genotyping and CNV interrogation were accomplished by multiplex single-base extension using the MassARRAY platform (Agena Biosciences) and multiplex ligation-dependent probe amplification (MRC Holland), respectively.
View Article and Find Full Text PDFBackground: Next-generation sequencing (NGS)-based panels have gained traction as a strategy for reproductive carrier screening. Their value for screening Ashkenazi Jewish (AJ) individuals, who have benefited greatly from population-wide targeted testing, as well as Sephardi/Mizrahi Jewish (SMJ) individuals (an underserved population), has not been fully explored.
Methods: The clinical utilization by 6,805 self-reported Jewish individuals of an expanded NGS panel, along with several ancillary assays, was assessed retrospectively.
Fragile X syndrome (FXS) is characterized by mental retardation and in the vast majority of cases it is caused by expansion of CGG trinucleotide repeats in the 5' untranslated region (or UTR) in the FMR1 gene on the X chromosome. The size and methylation status of CGG repeats are correlated with the clinical phenotype of FMR1-related disorders. The methods used for clinical genetic testing of FXS include polymerase chain reaction (PCR) amplification and Southern blot analyses, which effectively detect alleles with repeats in the normal, intermediate, premutation, and full mutation size ranges, as well as the methylation status of FMR1 promoter region.
View Article and Find Full Text PDF