Survival and cause-specific mortality rates are vital for evidence-based population forecasting and conservation, particularly for large carnivores, whose populations are often vulnerable to human-caused mortalities. It is therefore important to know the relationship between anthropogenic and natural mortality causes to evaluate whether they are additive or compensatory. Further, the relation between survival and environmental covariates could reveal whether specific landscape characteristics influence demographic performance.
View Article and Find Full Text PDFThe estimation of foraging parameters is fundamental for understanding predator ecology. Predation and feeding can vary with multiple factors, such as prey availability, presence of kleptoparasites and human disturbance. However, our knowledge is mostly limited to local scales, which prevents studying effects of environmental factors across larger ecological gradients.
View Article and Find Full Text PDFFor political and administrative governance of land-use decisions, high-resolution and reliable spatial models are required over large areas and for various time horizons. We present a process-centered simulation model 'NextStand' (a forest landscape model, FLM) and its R-script, which predicts regional forest characteristics at a forest stand resolution. The model uses whole area stand data and is optimized for realistic iterative timber harvesting decisions, based on stand compositions (developing over time) and locations.
View Article and Find Full Text PDFThe ecology and evolution of reproductive timing and synchrony have been a topic of great interest in evolutionary ecology for decades. Originally motivated by questions related to behavioral and reproductive adaptation to environmental conditions, the topic has acquired new relevance in the face of climate change. However, there has been relatively little research on reproductive phenology in mammalian carnivores.
View Article and Find Full Text PDFLytic polysaccharide monooxygenases (LPMOs) are widely distributed in Nature, where they catalyze the hydroxylation of glycosidic bonds in polysaccharides. Despite the importance of LPMOs in the global carbon cycle and in industrial biomass conversion, the catalytic properties of these monocopper enzymes remain enigmatic. Strikingly, there is a remarkable lack of kinetic data, likely due to a multitude of experimental challenges related to the insoluble nature of LPMO substrates, like cellulose and chitin, and to the occurrence of multiple side reactions.
View Article and Find Full Text PDF