Combined therapies in cancer treatment aim to enhance antitumor activity. However, delivering multiple small molecules imposes challenges, as different drugs have distinct pharmacokinetic profiles and tumor penetration abilities, affecting their therapeutic efficacy. To circumvent this, poly(lactic-co-glycolic acid) (PLGA)-polyethylene glycol (PEG)-based nanoparticles were developed as a platform for the codelivery of synergistic drug ratios, improving therapeutic efficacy by increasing the percentage of injected dose reaching the tumor.
View Article and Find Full Text PDFPost-transcriptional RNA modifications can regulate RNA function and play an important role in gene expression. Studying RNA modifying enzymes and their associated modifications remains a considerable challenge. Here we describe the RNA-mediated activity-based protein profiling (RNABPP) methodology, a chemoproteomic strategy for profiling the activity of RNA modifying enzymes in their native context.
View Article and Find Full Text PDFThe first approved vaccines for human use against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are nanotechnology-based. Although they are modular, rapidly produced, and can reduce disease severity, the currently available vaccines are restricted in preventing infection, stressing the global demand for novel preventive vaccine technologies. Bearing this in mind, we set out to develop a flexible nanovaccine platform for nasal administration to induce mucosal immunity, which is fundamental for optimal protection against respiratory virus infection.
View Article and Find Full Text PDFThin films of the superconductor YBaCuO (YBCO) were modified by low-energy light-ion irradiation employing collimated or focused He beams, and the long-term stability of irradiation-induced defects was investigated. For films irradiated with collimated beams, the resistance was measured in situ during and after irradiation and analyzed using a phenomenological model. The formation and stability of irradiation-induced defects are highly influenced by temperature.
View Article and Find Full Text PDFModification of RNA with N-methyladenosine (mA) has gained attention in recent years as a general mechanism of gene regulation. In the liver, mA, along with its associated machinery, has been studied as a potential biomarker of disease and cancer, with impacts on metabolism, cell cycle regulation, and pro-cancer state signaling. However these observational data have yet to be causally examined For example, neither perturbation of the key mA writers and , nor the mA readers and have been thoroughly mechanistically characterized as they have been .
View Article and Find Full Text PDF