Self-assembled AlN nanowires (NWs) are grown by plasma-assisted molecular beam epitaxy (PAMBE) on SiO/Si (111) substrates. Using a combination of in situ reflective high energy electron diffraction and ex situ x-ray diffraction (XRD), we show that the NWs grow nearly strain-free, preferentially perpendicular to the amorphous SiO interlayer and without epitaxial relationship to Si(111) substrate, as expected. Scanning electron microscopy investigation reveals significant NWs coalescence, which results in their progressively increasing diameter and formation of columnar structures with non-hexagonal cross-section.
View Article and Find Full Text PDFMicroorganisms regulate their interactions with surfaces by altering the transcription of specific target genes in response to physicochemical surface cues. To assess the influence of surface charge and surface chemistry on the transcriptional oxidative stress response, we evaluated the expression of three genes, , , and from the Gram-negative bacterium, after a short exposure to GaN interfaces. We observed that both surface charge and surface chemistry were the factors regulating the transcriptional response of the target genes, which indicates that reactive oxygen species (ROS) generation and the ROS response at the GaN interfaces were affected by changing surface properties.
View Article and Find Full Text PDFThe surface properties of inorganic materials can be used to modulate the response of microorganisms at the interface. We used the persistent photoconductivity properties of chemically treated gallium nitride substrates to evaluate the stress response of wild-type, ΔfliC, and ΔcsgG mutant exposed to charged surfaces. Substrate surface characterization and biological assays were used to correlate the physiological response to substrate surface charge.
View Article and Find Full Text PDFACS Appl Bio Mater
September 2019
Bacterial behavior is often controlled by structural and composition elements of their cell wall. Using genetic mutant strains that change specific aspects of their surface structure, we modified bacterial behavior in response to semiconductor surfaces. We monitored the adhesion, membrane potential, and catalase activity of the Gram-negative bacterium () that were mutant for genes encoding components of their surface architecture, specifically flagella, fimbriae, curli, and components of the lipopolysaccharide membrane, while on gallium nitride (GaN) surfaces with different surface potentials.
View Article and Find Full Text PDFNeurotypic PC12 cells behavior was studied on nanostructured GaN and rationalized with respect to surface charge, doping level, and chemical functionalization. The semiconductor analysis included atomic force microscopy, Kelvin probe force microscopy, and X-ray photoelectron spectroscopy. The semiconductor surfaces were then evaluated as biointerfaces, and the cell behavior was quantified based on cell viability, reactive oxygen species production, as well as time dependent intracellular Ca concentration, [Ca], a known cell-signaling molecule.
View Article and Find Full Text PDF