Publications by authors named "R Kirnbauer"

The TLR4 (Toll-like receptor 4)-activating agonist MPLA (monophosphoryl lipid A) is a key component of the adjuvant systems AS01 and AS04, utilized in marketed preventive vaccines for several infectious pathogens. As MPLA is a biologically-derived product containing a mixture of several lipid A congeners with a 4' phosphoryl group and varying numbers of acyl chains with distinct activities, extensive efforts to refine its production and immunogenicity are ongoing; notably, the development of the BECC (Bacterial Enzymatic Combinatorial Chemistry) system in which bacteria express lipid A-modifying enzymes to produce a panoply of lipid A congeners. In an effort to characterize the adjuvant activity of these lipid A congeners, we compared biologically-derived and synthetic versions of BECC470 and BECC438 for adjuvant activity in BALB/c mice vaccinated with the HPV (Human papilloma virus) VLP-based vaccine, RG1-VLP.

View Article and Find Full Text PDF

The development of keratinocytic skin tumors, presumably attributable to paradoxical activation of the MAPK pathway, represents a relevant side effect of targeted therapies with BRAF inhibitors (BRAFis). The role of cutaneous papillomavirus infection in BRAFi-associated skin carcinogenesis, however, is still inconclusive. Employing the Mus musculus papillomavirus 1 (MmuPV1) skin infection model, the impact of BRAFis and UVB exposure on papillomavirus induced skin tumorigenesis was investigated in immunocompetent FVB/NCrl mice.

View Article and Find Full Text PDF

The species and tissue specificities of HPV (human papillomavirus) for human infection and disease complicates the process of prophylactic vaccine development in animal models. HPV pseudoviruses (PsV) that carry only a reporter plasmid have been utilized in vivo to demonstrate cell internalization in mouse mucosal epithelium. The current study sought to expand the application of this HPV PsV challenge model with both oral and vaginal inoculation and to demonstrate its utility for testing vaccine-mediated dual-site immune protection against several HPV PsV types.

View Article and Find Full Text PDF

Papillomaviruses (PVs) are a family of small DNA tumor viruses that can induce benign lesions or cancer in vertebrates. The observation that animal PV capsid-proteins spontaneously self-assemble to empty, highly immunogenic virus-like particles (VLPs) has led to the establishment of vaccines that efficiently protect humans from specific PV infections and associated diseases. We provide an overview of PV-induced tumors in horses and other equids, discuss possible routes of PV transmission in equid species, and present recent developments aiming at introducing the PV VLP-based vaccine technology into equine medicine.

View Article and Find Full Text PDF