Publications by authors named "R Khardori"

Glucagon mediated mechanisms have been shown to play clinically significant role in energy expenditure. The present study was designed to understand whether pharmacological mimicking of cold using menthol (TRPM8 modulator) can induce glucagon-mediated energy expenditure to prevent weight gain and related complications. Acute oral and topical administration of TRPM8 agonists (menthol and icilin) increased serum glucagon concentration which was prevented by pre-treatment with AMTB, a TRPM8 blocker.

View Article and Find Full Text PDF

High fat diet (HFD)-induced alterations in gut microbiota and resultant 'leaky gut' phenomenon promotes metabolic endotoxemia, ectopic fat deposition, and low-grade systemic inflammation. Here we evaluated the effects of a combination of green tea extract (GTE) with isomalto-oligosaccharide (IMOs) on HFD-induced alterations in mice. Male Swiss albino mice were fed with HFD (58% fat kcal) for 12 weeks.

View Article and Find Full Text PDF

Background: High-fat diets (HFDs) induce systemic inflammation, gut microbial derangements and disturb metabolic homeostasis, resulting in weight gain, insulin resistance and nonalcoholic fatty liver (NAFL). Numerous antioxidants and prebiotic/probiotics per se may prevent HFD-associated comorbidities, but there are no reports related to their combination.

Objective: In the present study, we aim to evaluate a cobiotic combination of lycopene (antioxidant) and isomalto-oligosaccharides (IMOs, a prebiotic) for prevention of HFD-induced alterations.

View Article and Find Full Text PDF

Fibroblast growth factor 21 (FGF21) modulates a diverse range of biological functions, including glucose and lipid metabolism, adaptive starvation response, and energy homeostasis, but with limited mechanistic insight. FGF21 treatment has been shown to inhibit hepatic growth hormone (GH) intracellular signaling. To evaluate GH axis involvement in FGF21 actions, transgenic mice overexpressing bovine GH were used.

View Article and Find Full Text PDF

In addition to their extended lifespans, slow-aging growth hormone receptor/binding protein gene-disrupted (knockout) (GHR-KO) mice are hypoinsulinemic and highly sensitive to the action of insulin. It has been proposed that this insulin sensitivity is important for their longevity and increased healthspan. We tested whether this insulin sensitivity of the GHR-KO mouse is necessary for its retarded aging by abrogating that sensitivity with a transgenic alteration that improves development and secretory function of pancreatic β-cells by expressing Igf-1 under the rat insulin promoter 1 (RIP::IGF-1).

View Article and Find Full Text PDF