Publications by authors named "R Keyston"

Nuclear transfer (NT) using transgenic donor cells is an efficient means for generation of transgenic founder goats, especially in regard to the number of animals required to produce a transgenic founder expressing the protein of interest. Vectors can be designed for organ-specific expression and secretion of recombinant proteins within the target tissue. Furthermore, donor cells can be selected for gender, genetically modified to introduce the transgene of interest and screened for incorporation of the transgene into the genome before use in NT.

View Article and Find Full Text PDF

In vitro transfection of cultured cells combined with nuclear transfer currently is the most effective procedure to produce transgenic livestock. In the present study, bovine primary fetal fibroblasts were transfected with a green fluorescent protein (GFP)-reporter transgene and used as nuclear donor cells in oocyte reconstructions. Because cell synchronization protocols are less effective after transfection, activated oocytes may be more suitable as hosts for nuclear transfer.

View Article and Find Full Text PDF

The developmental potential of adult somatic nuclei after nuclear transfer (NT) into enucleated, in vitro-matured oocytes was evaluated in a dwarf breed of goat (BELE: Breed Early Lactate Early). Somatic donor cells were obtained from two different sources: 1) adult granulosa cells (GCs) and 2) fetal fibroblasts. Primary GCs were obtained from follicular aspirants after laparoscopic oocyte pick-up (LOPU) and were cryopreserved immediately.

View Article and Find Full Text PDF

The developmental potential of caprine fetal fibroblast nuclei after in vitro transfection and nuclear transfer (NT) into enucleated, in vitro-matured oocytes was evaluated. Fetal fibroblasts were isolated from Day 27 to Day 30 fetuses from a dwarf breed of goat (BELE: breed early lactate early). Cells were transfected with constructs containing the enhanced green fluorescent protein (eGFP) and neomycin resistance genes and were selected with G418.

View Article and Find Full Text PDF