Rapid and precise identification of infectious microorganisms is important across a range of applications where microbial contamination can cause serious issues ranging from microbial resistance to corrosion. In this paper a screen-printed, polymeric β-cyclodextrin (β-CD) modified electrode, affording nanocavities for inclusion of the analytes, is shown as a disposable sensor capable of identifying bacteria by their metabolites. Three bacterial species were tested: two from the genus, () and (), and (), a member of the family, .
View Article and Find Full Text PDFAmphiphilic peptides, such as Aß amyloids, can adsorb at an interface between two immiscible electrolyte solutions (ITIES). Based on previous work (vide infra), a hydrophilic/hydrophobic interface is used as a simple biomimetic system for studying drug interactions. The ITIES provides a 2D interface to study ion-transfer processes associated with aggregation, as a function of Galvani potential difference.
View Article and Find Full Text PDFStable benzotriazinyl radicals (Blatter's radicals) recently attracted considerable interest as building blocks for functional materials. The existing strategies to derivatize Blatter's radicals are limited, however, and synthetic routes are complex. Here, we report that an inexpensive, commercially available, analytical reagent Nitron undergoes a previously unrecognized transformation in wet acetonitrile in the presence of air to yield a new Blatter-type radical with an amide group replacing a phenyl at the C(3)-position.
View Article and Find Full Text PDFEmulsification of oils at liquid/liquid interfaces is of fundamental importance across a range of applications, including detergency. Adsorption and partitioning of the anionic surface active ions at the interface between two immiscible solutions is known to cause predictable chaos at the transfer potential region of the surfactant. In this work, the phenomenon that leads to the chaotic behaviour shown by sodium dodecylbenzene sulfonate (SDBS) at the water/1,2-dichloroethane interface is applied to commercial surfactants and aqueous/glyceryl trioleate interface.
View Article and Find Full Text PDFSoft biocompatible gels comprised of rolled up graphene oxide nanocapsules within the pores of silanized hydrogels may be used as electrochemical pseudocapacitors with physiological glucose or KOH as a reducing agent, affording a material suitable for devices requiring pulses with characteristic time less than a second.
View Article and Find Full Text PDF