Contamination of groundwater by nitrate from intensive agriculture is a serious problem globally. Excessive fertilization has led to nitrate contamination of the Coastal Aquifer in Israel. Here we report the efficient removal of nitrate from contaminated groundwater by micellar-enhanced ultrafiltration (MEUF) using a specially tailored membrane.
View Article and Find Full Text PDFAntifouling polymer coating surfaces are used in widespread industries applications. Zwitterionic polymers have been identified as promising materials in developing polymer coating surfaces. Importantly, the density of the polymer chains is crucial for acquiring superior antifouling performance.
View Article and Find Full Text PDFPharmaceutical wastewater pollution has reached an alarming stage, as many studies have reported. Membrane separation has shown great performance in wastewater treatment, but there are some drawbacks and undesired byproducts of this process. Selective membranes could be used for pollutant investigation sensors or even for pollutant recovery.
View Article and Find Full Text PDFThe hydrophilic and hydrophobic single-walled carbon nanotube membranes were prepared and progressively applied in sorption, filtration, and pertraction experiments with the aim of eliminating three antibiotics-tetracycline, sulfamethoxazole, and trimethoprim-as a single pollutant or as a mixture. The addition of SiO to the single-walled carbon nanotubes allowed a transparent study of the influence of porosity on the separation processes. The mild oxidation, increasing hydrophilicity, and reactivity of the single-walled carbon nanotube membranes with the pollutants were suitable for the filtration and sorption process, while non-oxidized materials with a hydrophobic layer were more appropriate for pertraction.
View Article and Find Full Text PDFWe present operando small-angle neutron scattering (SANS) experiments on silica fouling at two reverse osmose (RO) membranes under almost realistic conditions of practiced RO desalination technique. To its realization, two cells were designed for pressure fields and tangential feed cross-flows up to 50 bar and 36 L/h, one cell equipped with the membrane and the other one as an empty cell to measure the feed solution in parallel far from the membrane. We studied several aqueous silica dispersions combining the parameters of colloidal radius, volume fraction, and ionic strength.
View Article and Find Full Text PDF