Atractylenolide I (ATL-I) can interfere with Colorectal cancer (CRC) cell proliferation by changing apoptosis, glucose metabolism and other behaviors, making it an effective drug for inhibiting CRC tumor growth. In this paper, we investigated the interactions between ATL-I and Keratin 7 (KRT7), a CRC-specific marker, to determine the potential pathways by which ATL-I inhibits CRC development. The KRT7 expression level in CRC was predicted online using the GEPIA website and then validated.
View Article and Find Full Text PDFBackground: Ferroptosis and immune responses are critical pathological events in spinal cord injury (SCI), whereas relative molecular and cellular mechanisms remain unclear.
Methods: Micro-array datasets (GSE45006, GSE69334), RNA sequencing (RNA-seq) dataset (GSE151371), spatial transcriptome datasets (GSE214349, GSE184369), and single cell RNA sequencing (scRNA-seq) datasets (GSE162610, GSE226286) were available from the Gene Expression Omnibus (GEO) database. Through weighted gene co-expression network analysis and differential expression analysis in GSE45006, we identified differentially expressed time- and immune-related genes (DETIRGs) associated with chronic SCI and differentially expressed ferroptosis- and immune-related genes (DEFIRGs), which were validated in GSE151371.
This study aims to elucidate the target and mechanism of baicalin, a clinically utilized drug, in the treatment of neuroinflammatory diseases. Neuroinflammation, characterized by the activation of glial cells and the release of various pro-inflammatory cytokines, plays a critical role in the pathogenesis of various diseases, including spinal cord injury (SCI). The remission of such diseases is significantly dependent on the improvement of inflammatory microenvironment.
View Article and Find Full Text PDF