Publications by authors named "R K Voladri"

The emergence of new therapeutic modalities requires complementary tools for their efficient syntheses. Availability of methodologies for site-selective modification of biomolecules remains a long-standing challenge, given the inherent complexity and the presence of repeating residues that bear functional groups with similar reactivity profiles. We describe a bioconjugation strategy for modification of native peptides relying on high site selectivity conveyed by enzymes.

View Article and Find Full Text PDF

Superoxide dismutase (SOD) is a ubiquitous metalloenzyme in aerobic organisms that catalyzes the conversion of superoxide anion to hydrogen peroxide. Mycobacterium tuberculosis is unusual in that it secretes large quantities of iron-cofactored SOD. To determine the role of SOD in pathogenesis, we constructed mutants of M.

View Article and Find Full Text PDF

A major obstacle to development of subunit vaccines and diagnostic reagents for tuberculosis is the inability to produce large quantities of these proteins. To test the hypothesis that poor expression of some mycobacterial genes in Escherichia coli is due, in part, to the presence of low-usage E. coli codons, we used site-directed mutagenesis to convert low-usage codons to high-usage codons for the same amino acid in the Mycobacterium tuberculosis genes for antigens 85A and 85B and superoxide dismutase.

View Article and Find Full Text PDF

In contrast to most Staphylococcus aureus isolates in which the gene for staphylococcal beta-lactamase (blaZ) is plasmid borne, isolates typeable by group II bacteriophages frequently carry blaZ on the chromosome. Furthermore, the chromosomal gene encodes the type B variant of staphylococcal beta-lactamase for which the nucleotide and deduced amino acid sequences have not yet been reported. To better understand beta-lactamase production among phage group II staphylococci and the nature of the type B beta-lactamase, we determined the type and amount of enzyme produced by 24 phage group II isolates.

View Article and Find Full Text PDF

New antibiotic regimens are needed for the treatment of multidrug-resistant tuberculosis. Mycobacterium tuberculosis has a thick peptidoglycan layer, and the penicillin-binding proteins involved in its biosynthesis are inhibited by clinically relevant concentrations of beta-lactam antibiotics. beta-Lactamase production appears to be the major mechanism by which M.

View Article and Find Full Text PDF