Background: As liver metastasis is the most common cause of mortality in patients with colorectal cancer, studying colorectal cancer liver metastasis (CLM) microenvironment is essential for improved understanding of tumor biology and to identify novel therapeutic targets.
Methods: We used a multiplex immunofluorescence platform to study tumor associated macrophage (TAM) polarization and adaptive T cell subtypes in tumor samples from 105 CLM patients (49 without and 56 with preoperative chemotherapy).
Results: CLM exhibited M2 macrophage polarization, and helper T cells were the prevalent adaptive T cell subtype.
Background: Immune profiling has become an important tool for identifying predictive, prognostic and response biomarkers for immune checkpoint inhibitors from tumor microenvironment (TME). We aimed to build a multiplex immunofluorescence (mIF) panel to apply to formalin-fixed and paraffin-embedded tissues in mice tumors and to explore the programmed cell death protein 1/ programmed cell death 1 ligand 1 (PD-1/PD-L1) axis.
Results: An automated eight-color mIF panel was evaluated to study the TME using seven antibodies, including cytokeratin 19, CD3e, CD8a, CD4, PD-1, PD-L1, F4-80 and DAPI, then was applied in six mice lung adenocarcinoma samples.
Unlabelled: As the second most common subtype of breast carcinoma, Invasive Lobular Carcinoma (ILC) microenvironment features have not been thoroughly explored. ILC has different histological subtypes and elucidating differences in their microenvironments could lead to a comprehensive development of cancer therapies. We designed a custom-made cancer associated fibroblast (CAFs) panel and used multiplex immunofluorescence to identify the differences in tumor microenvironment between Classic ILC and Pleomorphic ILC.
View Article and Find Full Text PDFSpatial modelling methods have gained prominence with developments in high throughput imaging platforms. Multiplex immunofluorescence (mIF) provides the scope to examine interactions between tumor and immune compartment at single cell resolution using a panel of antibodies that can be chosen based on the cancer type or the clinical interest of the study. The markers can be used to identify the phenotypes and to examine cellular interactions at global and local scales.
View Article and Find Full Text PDFBackground: Several tumor-associated macrophages (TAMs) have shown promise as prognosticators in cancer. Our aim was to validate the importance of TAMs in malignant pleural mesothelioma (MPM) using a two-stage design.
Methods: We explored The Cancer Genome Atlas (TCGA-MESO) to select immune-relevant macrophage genes in MPM, including M1/M2 markers, as a discovery cohort.