The TNF receptor-interacting protein kinases (RIPK)-1 and 3 are regulators of extrinsic cell death response pathways, where RIPK1 makes the cell survival or death decisions by associating with distinct complexes mediating survival signaling, caspase activation or RIPK3-dependent necroptotic cell death in a context-dependent manner. Using a mass spectrometry-based screen to find new components of the ripoptosome/necrosome, we discovered the protein-arginine methyltransferase (PRMT)-5 as a direct interaction partner of RIPK1. Interestingly, RIPK3 but not RIPK1 was then found to be a target of PRMT5-mediated symmetric arginine dimethylation.
View Article and Find Full Text PDFTo ensure productive infection, herpesviruses utilize tegument proteins and nonstructural regulatory proteins to counteract cellular defense mechanisms and to reprogram cellular pathways. The M25 proteins of mouse cytomegalovirus (MCMV) belong to the betaherpesvirus UL25 gene family that encodes viral proteins implicated with regulatory functions. Through affinity purification and mass spectrometric analysis, we discovered the tumor suppressor protein p53 as a host factor interacting with the M25 proteins.
View Article and Find Full Text PDFThe zonula occludens (ZO)-2 protein links tight junctional transmembrane proteins to the actin cytoskeleton and associates with splicing and transcription factors in the nucleus. Multiple posttranslational modifications control the intracellular distribution of ZO-2. Here, we report that ZO-2 is a target of the SUMOylation machinery and provide evidence on how this modification may affect its cellular distribution and function.
View Article and Find Full Text PDFThe non-canonical IKK kinase TBK1 serves as an important signal transmitter of the antiviral interferon response, but is also involved in the regulation of further processes such as autophagy. The activity of TBK1 is regulated by posttranslational modifications comprising phosphorylation and ubiquitination. This study identifies SUMOylation as a novel posttranslational TBK1 modification.
View Article and Find Full Text PDFThe NF-κB subunit RelB is known to act either as an activator or repressor of NF-κB-dependent gene expression. The RelB-p52 heterodimer, for instance, is the key element of the alternative NF-κB signaling pathway supporting the expression of a subset of NF-κB target genes. By contrast, RelB is crucial for the repression of important pro-inflammatory cytokines like TNFα or interleukin 1β.
View Article and Find Full Text PDF