Direct carbonylation of CH to CHCOOH provides a promising pathway for upgrading of natural gas to transportable liquid chemicals, in which high-efficiency CH activation and controllable C-C coupling are both critical but challenging. Herein, we report that highly efficient photo-driven carbonylation of CH with CO and O to CHCOOH is achieved over MoS-confined Rh-Zn atomic-pair in conjunction with TiO. It delivers a high CHCOOH productivity of 152.
View Article and Find Full Text PDFAnthocyanin is the primary color-developing component in the pericarp of the passion fruit. Although the pericarp of the passion fruit is anticipated to be a significant source of anthocyanin, however, information regarding anthocyanin biosynthesis in the passion fruit pericarp remains unexplored. Based on metabolomics analysis, a total of five anthocyanins were identified in the purple-skinned passion fruit pericarp, among which three anthocyanins, petunidin-3-O-arabinoside, geranylgeranyl-3,5-O-diglucoside, and petunidin-3-O-rutinoside, play key roles in the coloration of the passion fruit pericarp.
View Article and Find Full Text PDFIntroduction: While the diagnosis of cystic fibrosis (CF) is often straightforward and reliant on correlation between genetic testing and clinical signs and symptoms, there is a subset where the distinction is not nearly as clearcut. This has previously been reported in patients identified through newborn screening but not meeting full CF diagnostic criteria, earning the label of CF Screen Positive, Inconclusive Diagnosis (CFSPID) instead. A homologous diagnostic category in adults is named CF Transmembrane Conductance Regulator-Related Disorder (CFTR-RD).
View Article and Find Full Text PDFSolid-state nanopores exhibit dynamically variable sizes influenced by buffer conditions and applied electric field. While dynamical pore behavior can complicate biomolecular sensing, it also offers opportunities for controlled, modification of pore size post-fabrication. In order to optimally harness solid-state pore dynamics for controlled growth, there is a need to systematically quantify pore growth dynamics and ideally develop quantitative models to describe pore growth.
View Article and Find Full Text PDFTwo-dimensional transition metal dichalcogenides (TMDCs) are highly anisotropic, layered semiconductors, with the general formula ME (M = metal, E = sulfur, selenium or tellurium). Much current research in this field focusses on TMDCs for catalysis and energy applications; they are also attracting great interest for next-generation transistor and optoelectronic devices. The latter high-tech applications place stringent requirements on the stoichiometry, crystallinity, morphology and electronic properties of monolayer and few-layer materials.
View Article and Find Full Text PDF