Publications by authors named "R K Dubey"

Chiral organic molecules with a complementing π-structure are highly desired to obtain materials with good semiconducting properties and pronounced chirality effects in the visible region. Herein, we introduce a novel design strategy to achieve an axially chiral and rigid perylene bisimide (PBI) dye by attaching the chirality-inducing 2,2'-biphenoxy moiety at one side of the bay area and the rigidity-inducing di--butylsilanediol bridge on the other side. This yielded a new bay-functionalized PBI derivative carrying the combination of a highly rigid and, simultaneously, an axially chiral perylene core.

View Article and Find Full Text PDF

Dengue virus infection is a major source of morbidity and mortality in the majority of tropical and subtropical nations. In Nepal, the first case of dengue was reported in 2004, followed by numerous outbreaks exerting a critical impact on public health. This study aims to describe the clinical and laboratory characteristics of dengue patients visiting a tertiary care hospital to see the trend of presentation.

View Article and Find Full Text PDF

Lanthanide-based luminescent materials hold promise in sensing applications due to their distinct optical properties. Though advancements in lanthanide-based metal-organic frameworks (MOFs) have enhanced downshifting luminescence, achieving upconversion remains challenging. In this effort, we prepared upconverting ytterbium-doped europium MOFs (%Yb-EuMOFs; = 10, 20, and 30) via the solvothermal method using 2,6-naphthalenedicarboxylic acid (NDC) as an organic linker.

View Article and Find Full Text PDF
Article Synopsis
  • Ultrafast (UF) sintering is a novel technique for creating LiLaZrO (LLZO) solid-state electrolytes, crucial for the development of solid-state batteries.
  • This study investigates the surface chemistry of UF-sintered LLZO and finds significant contamination, particularly from LiO, which affects electrochemical performance.
  • An additional heat treatment at 900 °C post-UF sintering effectively reduces this contamination, leading to better performance in Li/LLZO/Li symmetric cells.
View Article and Find Full Text PDF