Rheumatoid arthritis is an autoimmune disease which affects the small joints. Early prediction of RA is necessary for the treatment and management of the disease. The current work presents a deep learning and quantum computing-based automated diagnostic approach for RA in hand thermal imaging.
View Article and Find Full Text PDFThe aims and objectives of the study were to i) perform image segmentation using a color-based k-means clustering algorithm and feature extraction using binary robust invariant scalable key points (BRISK), maximum stable extremal regions (MSER), features from accelerated segment test (FAST), Harris, and orientated FAST and rotated BRIEF (ORB); ii) compare the performance of classical machine learning techniques such as LogitBoost, Bagging, and SVM with a quantum machine learning technique. For the proposed study, 240 hand thermal images were acquired in the dorsal view and ventral view of both the right and left-hand regions of RA and normal subjects. The hot spot regions from the thermograms were segmented using a color-based k-means clustering technique.
View Article and Find Full Text PDFThe aim and objectives of the study are as follows: (i) to implement automated patch-based classification of hand X-ray images using modified pre-trained convolutional neural network (CNN) models; (ii) to develop a customized CNN model for automated feature extraction and classification of hand X-ray images and to compare the performance of customized CNN models with non-linear and linear kernels; (iii) to construct the hand crafted feature fusion (SIFT+ Customized CNN features) and categorize the normal and RA using Machine Learning classifiers. The model was trained on 75 images (10,000 patches) of hand radiographs and tested using 25 images (500 patches) that were not included in the training set. The accuracy of the modified pre-trained model GoogLeNet was 89% and the proposed custom model three achieved an accuracy of 95%.
View Article and Find Full Text PDF