The presence of toxic trace elements (TEs) has resulted in a worldwide deterioration in freshwater ecosystem quality. This study aimed to analyze the distribution of TEs, including chromium (Cr), nickel (Ni), arsenic (As), mercury (Hg), cadmium (Cd), and lead (Pb), in water, sediment, and organs of Tilapia (Oreochromis mossambicus) collected from selected inland water bodies in Tamil Nadu, India. The water samples exhibited a range of concentrations for TEs: Cr varied from 0.
View Article and Find Full Text PDFEnviron Geochem Health
March 2024
The migration of organochlorine pesticides (OCPs) and cypermethrin residues from internal organs to edible tissues of ice-held Labeo rohita (rohu) was investigated in this study. The liver (246 µg/kg) had the highest level of ∑OCP residues, followed by the gills (226 µg/kg), intestine (167 µg/kg), and muscle tissue (54 µg/kg). The predominant OCPs in the liver and gut were endosulfan (53-66 µg/kg), endrin (45-53 µg/kg), and dichloro-diphenyl-trichloroethane (DDT; 26-35 µg/kg).
View Article and Find Full Text PDFThis study used inductively coupled plasma and mass spectrometry, followed by microwave digestion, to assess the concentration of six trace metals (Cr, Ni, As, Cd, Hg, and Pb) in three canned products (tuna in oil [TIO], sardine in oil [SIO], and mackerel in oil [MIO]), two pickled products (prawn pickle [PP] and fish pickle [FP]), and one smoked product (masmin) collected from Tuticorin market, southern India. Trace metal (TM) levels in canned, pickled, and smoked fish varied from 0.01 to 1.
View Article and Find Full Text PDFThis study assesses the bioaccumulation, ecological, and health risks associated with potentially toxic metals (PTMs), including Pb, Hg, Cd, As, and Cr in Hare Island, Thoothukudi. The results revealed that the concentration of PTMs in sediment, seawater, and S. wightii ranged from 0.
View Article and Find Full Text PDFSeaweeds are widely consumed as natural seafood in various Asian countries. Chemical contaminants, such as pesticide residues (PRs), can contaminate it due to its high bio-accumulation nature. Limited research exists on the presence of PRs in edible seaweeds, their decrease in levels during cooking processes, and the evaluation of hazard indices and associated health risks to humans.
View Article and Find Full Text PDF