Background: The physical and the social environment are important predictors of healthy weight, especially in low socioeconomic position (SEP) neighborhoods. Many Dutch municipalities have implemented a healthy weight approach (HWA). Yet, there is room for improvement.
View Article and Find Full Text PDFA brief exposure of hippocampal slices to L-quisqualic acid sensitizes CA1 pyramidal neurons 30-250-fold to depolarization by two classes of excitatory amino acid analogues: (1) those whose depolarizing effects are rapidly terminated following washout, e.g. L-2-amino-4-phosphonobutanoic acid (L-AP4) and L-2-amino-6-phosphonohexanoic acid (L-AP6) and (2) those whose depolarizing effects persist following washout, e.
View Article and Find Full Text PDFThe conformationally constrained cyclobutane analogues of quisqualic acid (Z)- and (E)-1-amino-3-[2'-(3',5'-dioxo-1',2', 4'-oxadiazolidinyl)]cyclobutane-1-carboxylic acid, compounds 2 and 3, respectively, were synthesized. Both 2 and 3 stimulated phosphoinositide (PI) hydrolysis in the hippocampus with EC50 values of 18 +/- 6 and 53 +/- 19 microM, respectively. Neither analogue stimulated PI hydrolysis in the cerebellum.
View Article and Find Full Text PDFExposure of slices of rat hippocampus to quisqualic acid produces an enhanced sensitivity of neurons to depolarization by other excitatory amino acid analogues, particularly amino acid phosphonates. The phosphonates may act at extracellular sites, since their depolarizing effects are rapidly reversed by washout with phosphonate-free incubation medium. We now wish to report a novel class of excitatory amino acid analogues that induce a persistent depolarization that is not reversed by washout.
View Article and Find Full Text PDFThe syntheses of several novel N-(hydroxydioxocyclobutenyl)-containing analogues of gamma-amino-butyric acid and L-glutamate were undertaken to test the hypothesis that derivatives of 3,4-dihydroxy-3-cyclobutene-1,2-dione (squaric acid), such as 3-amino-4-hydroxy-3-cyclobutene-1,2-dione, could serve as a replacement for the carboxylate moiety in neurochemically interesting molecules. The syntheses were successfully accomplished by preparation of a suitably protected diamine or diamino acid followed by reaction with diethyl squarate. Subsequent deprotection resulted in the isolation of the corresponding N-(hydroxydioxocyclobutenyl)-containing analogues 13, 14, and 18.
View Article and Find Full Text PDF