Water Distribution Networks (WDNs) are critical infrastructures that ensure a continuous supply of safe water to homes. In the face of challenges, like water scarcity, establishing resilient networks is imperative, especially in regions vulnerable to water crises. This study evaluates the resilience of network designs through graph theory, including its hydraulic feasibility using EPANET software, an aspect often overlooked.
View Article and Find Full Text PDFFor this study, we investigated efficient strategies for the recovery of individual links in power grids governed by the direct current (DC) power flow model, under random link failures. Our primary objective was to explore the efficacy of recovering failed links based solely on topological network metrics. In total, we considered 13 recovery strategies, which encompassed 2 strategies based on link centrality values (link betweenness and link flow betweenness), 8 strategies based on the products of node centrality values at link endpoints (degree, eigenvector, weighted eigenvector, closeness, electrical closeness, weighted electrical closeness, zeta vector, and weighted zeta vector), and 2 heuristic strategies (greedy recovery and two-step greedy recovery), in addition to the random recovery strategy.
View Article and Find Full Text PDFNetwork controllability and its robustness have been widely studied. However, analytical methods to calculate network controllability with respect to node in- and out-degree targeted removals are currently lacking. This paper develops methods, based on generating functions for the in- and out-degree distributions, to approximate the minimum number of driver nodes needed to control directed networks, during node in- and out-degree targeted removals.
View Article and Find Full Text PDFAlthough vaccination is still considered to be the cornerstone of public health care, the increase in vaccination coverage has stagnated for many diseases. Most of these vaccines require two or three doses to be administered across several months or years. Single-injection vaccine formulations are an effective method to overcome the logistical barrier to immunization that is posed by these multiple-injection schedules.
View Article and Find Full Text PDFThe multifunctional human Parkinson's disease protein 7 (PARK7/DJ1) is an attractive therapeutic target due to its link with early-onset Parkinson's disease, upregulation in various cancers, and contribution to chemoresistance. However, only a few compounds have been identified to bind PARK7 due to the lack of a dedicated chemical toolbox. We report the creation of such a toolbox and showcase the application of each of its components.
View Article and Find Full Text PDF