Octopus vulgaris (Cuvier, 1797) is a cephalopod species with great economic value. In western Asturias (northwest of Spain), O. vulgaris artisanal fisheries are relatively well monitored and conditionally eco-labeled by the Marine Stewardship Council (MSC).
View Article and Find Full Text PDFThe majority of the plastic produced in the last century is accumulated in the environment, leading to an exacerbated contamination of marine environments due to transport from land to the ocean. In the ocean, mechanical abrasion, oxidation, and photodegradation degrade large plastics into microplastics (MPs) - 0.1 μm to 5 mm (EFSA, 2016) which are transported through water currents reaching the water surface, water column, and sediments.
View Article and Find Full Text PDFCell polarization is important for multiple physiological processes. In motile cells, microtubules (MTs) are organized as a polarized array, which is to a large extent comprised of Golgi-derived MTs (GDMTs), which asymmetrically extend toward the cell front. We have recently found that GDMT asymmetry is based on a nonrandom positioning of spatially restricted nucleation hotspots, where MTs form in a cooperative manner.
View Article and Find Full Text PDFNoncentrosomal microtubule (MT) nucleation at the Golgi generates MT network asymmetry in motile vertebrate cells. Investigating the Golgi-derived MT (GDMT) distribution, we find that MT asymmetry arises from nonrandom nucleation sites at the Golgi (hotspots). Using computational simulations, we propose two plausible mechanistic models of GDMT nucleation leading to this phenotype.
View Article and Find Full Text PDFTargeting angiogenesis is considered a promising therapy for cancer. Besides curtailing soluble factor mediated tumor angiogenesis, understanding the unexplored regulation of angiogenesis by mechanical cues may lead to the identification of novel therapeutic targets. We have recently shown that expression and activity of mechanosensitive ion channel transient receptor potential vanilloid 4 (TRPV4) is suppressed in tumor endothelial cells and restoring TRPV4 expression or activation induces vascular normalization and improves cancer therapy.
View Article and Find Full Text PDF