Eutrophication of inland lakes poses various societal and ecological threats, making water quality monitoring crucial. Satellites provide a comprehensive and cost-effective supplement to traditional in situ sampling. The Sentinel-2 MultiSpectral Instrument (S2 MSI) offers unique spectral bands positioned to quantify chlorophyll , a water-quality and trophic-state indicator, along with fine spatial resolution, enabling the monitoring of small waterbodies.
View Article and Find Full Text PDFPotential acute and chronic human health effects associated with exposure to cyanobacteria and cyanotoxins, including respiratory symptoms, are an understudied public health concern. We examined the relationship between estimated cyanobacteria biomass and the frequency of respiratory-related hospital visits for residents living near Green Bay, Lake Michigan, Wisconsin during 2017-2019. Remote sensing data from the Cyanobacteria Assessment Network was used to approximate cyanobacteria exposure through creation of a metric for cyanobacteria chlorophyll-a (Chl).
View Article and Find Full Text PDFCyanobacterial blooms in inland lakes produce large quantities of biomass that impact drinking water systems, recreation, and tourism and may produce toxins that can adversely affect public health. This study analyzed nine years of satellite-derived bloom records and compared how the bloom magnitude has changed from 2008-2011 to 2016-2020 in 1881 of the largest lakes across the contiguous United States (CONUS). We determined bloom magnitude each year as the spatio-temporal mean cyanobacteria biomass from May to October and in concentrations of chlorophyll-a.
View Article and Find Full Text PDFSci Total Environ
April 2023
Monitoring the complex seafloor morphology that drives the functioning of shallow coastal ecosystems is vital for assessing marine activities. Satellite-derived bathymetry (SDB) can provide a crucial dataset for creating the bathymetry maps needed to understand hazards and impacts produced by climate change in vulnerable coastal zones. SDB is effective in clear water, but still has limitations in application to areas with some turbidity.
View Article and Find Full Text PDF