Sepsis is defined by life-threatening organ dysfunction mediated by the host’s response to infection. This can result in septic dyslipidemia, which is involved in the neutralization of pathogen-related lipids. Knowledge of the regulatory mechanisms of septic dyslipidemia is incomplete.
View Article and Find Full Text PDFWe provide a descriptive characterization of the unfolded protein response (UPR) in skeletal muscle of human patients with peritoneal sepsis and a sepsis model of C57BL/6J mice. Patients undergoing open surgery were included in a cross-sectional study and blood and skeletal muscle samples were taken. Key markers of the UPR and cluster of differentiation 68 (CD68) as surrogate of inflammatory injury were evaluated by real-time PCR and histochemical staining.
View Article and Find Full Text PDFAs the longissimus dorsi muscle is the largest muscle in the equine back, it has great influence on the stability of the spine and facilitates proper locomotion. The longissimus muscle provides support to the saddle and rider and thereby influences performance in the horse. Muscular dysfunction has been associated with back disorders and decline of performance.
View Article and Find Full Text PDFMetal-reducing bacteria in the genus use a complex protein apparatus to guide the self-assembly of a divergent type IVa pilin peptide and synthesize conductive pilus appendages that show promise for the sustainable manufacturing of protein nanowires. The preferential helical conformation of the pilin, its high hydrophobicity, and precise distribution of charged and aromatic amino acids are critical for biological self-assembly and conductivity. We applied this knowledge to synthesize via recombinant methods truncated pilin peptides for the bottom-up fabrication of protein nanowires and identified rate-limiting steps of pilin nucleation and fiber elongation that control assembly efficiency and nanowire length, respectively.
View Article and Find Full Text PDFUnderstanding how natural and anthropogenic processes affect population dynamics of species with patchy distributions is critical to predicting their responses to environmental changes. Despite considerable evidence that demographic rates and dispersal patterns vary temporally in response to an array of biotic and abiotic processes, few applications of metapopulation theory have sought to explore factors that explain spatiotemporal variation in extinction or colonization rates. To facilitate exploring these factors, we extended a spatially explicit model of metapopulation dynamics to create a framework that requires only binary presence-absence data, makes few assumptions about the dispersal process, and accounts for imperfect detection.
View Article and Find Full Text PDF