Publications by authors named "R J Staples"

With the advent of multi-layered and 3D scaffolds, the understanding of microbiome composition and pathogenic mechanisms within polymicrobial biofilms is continuously evolving. A fundamental component in mediating the microenvironment and bacterial-host communication within the biofilm are bilayered nanoparticles secreted by bacteria, known as bacterial extracellular vesicles (BEVs), which transport key biomolecules including proteins, nucleic acids, and metabolites. Their characteristics and microbiome profiles are yet to be explored in the context of in vitro salivary polymicrobial biofilm.

View Article and Find Full Text PDF

The functionalization of pyrazole-based compounds with dinitromethyl and -hydroxytetrazole groups resulted in enhanced energetic properties. Two key compounds, 5-(dinitromethyl)-3,4-dinitro-1-pyrazole () and 5-(3,4-dinitro-1-pyrazol-5-yl)-1-tetrazol-1-ol (), along with their salts, were synthesized and evaluated for their energetic properties. Notably, the bishydroxylammonium salts (: 8778 m·s; : 33.

View Article and Find Full Text PDF

An organometallic erbium bismuth cluster complex, [K(THF)][Cp*ErBi] (), featuring a heterometallocubane core was isolated. The cube emerges from the rare Bi Zintl ion, bridging two erbium centers for the first time. SQUID magnetometry and calculations uncovered dominant antiferromagnetic coupling enabled through the chair-like hexabismuth anion.

View Article and Find Full Text PDF

The prenyl group is present in numerous biologically active small molecule drugs and natural products. We introduce benzylic C-H alkenylation of substrates Ar-CH with alkenylboronic esters (CH)OB-CH[double bond, length as m-dash]CMe as a pathway to form prenyl functionalized arenes Ar-CHCH[double bond, length as m-dash]CMe. Mechanistic studies of this radical relay catalytic protocol reveal diverse reactivity pathways exhibited by the copper(ii) alkenyl intermediate [Cu]-CH[double bond, length as m-dash]CMe that involve radical capture, bimolecular C-C bond formation, and hydrogen atom transfer (HAT).

View Article and Find Full Text PDF

The mol-ecular structure of the tripodal carbamoyl-methyl-phosphine oxide compound diethyl {[(5-[2-(di-eth-oxy-phosphor-yl)acetamido]-3-{2-[2-(di-eth-oxy-phos-phor-yl)acetamido]-eth-yl}pent-yl)carbamo-yl]meth-yl}phospho-nate, CHNOP, features six intra-molecular hydrogen-bonding inter-actions. The phospho-nate groups have key bond lengths ranging from 1.4696 (12) to 1.

View Article and Find Full Text PDF