Continuous ambient sulfur measurements are routinely conducted around the globe at numerous monitoring sites impacted by industrial sources, such as gas and oil processing facilities, pulp and paper mills, smelters, sewage treatment facilities, and concentrated animal feeding operations, as well as by natural sources, such as volcanoes. Various jurisdictions have or plan to establish air ambient quality objectives, guidelines, or standards for total reduced sulfur (TRS) based on odor perception and/or health effects. A conventional TRS monitoring technique is widely used, but few studies have looked at potential biases in the resulting TRS measurements.
View Article and Find Full Text PDFOil and gas wells (OGWs) can lead to soil and well emissions of methane (CH), a potent greenhouse gas, and hydrogen sulfide (HS), a highly toxic gas, both of which reduce air quality and can cause explosions when emitted into confined spaces. Developments have been occurring over OGWs, posing health and safety risks. However, to our knowledge, previous studies have not conjunctively analyzed well and soil emissions while considering development on or near OGWs.
View Article and Find Full Text PDFA mapping study targeting emissions of polycyclic aromatic compounds (PACs) from an oil sands tailings pond was undertaken in the Athabasca Oil sands Region (AOSR). Ten passive air samplers comprising polyurethane foam (PUF) disks were deployed around the perimeter of Suncor Tailings Pond 2/3 for a five-week period to generate time-integrated concentrations in air for PACs, which included ∑unsubstituted polycyclic aromatic hydrocarbons (PAHs), ∑alkylated PAHs (alk-PAHs), and ∑dibenzothiophenes (DBTs) (both unsubstituted and alkylated). Concentrations in air ranged from 13 to 70, 220-970, and 30-210 ng/m, respectively, and were elevated in samplers downwind of the tailings pond.
View Article and Find Full Text PDF