Publications by authors named "R J Schneider"

Background: Mild Cognitive Impairment (MCI) is often a precursor to Alzheimer's dementia (AD). Recent research underscores the relationship between mitochondrial dysfunction and amyloid-beta accumulation, raising the prospect of targeting mitochondrial function for intervention. Transcranial photobiomodulation (tPBM), a non-invasive technique utilizing near-infrared light, has been shown to enhance mitochondrial function.

View Article and Find Full Text PDF

Background: Mild Cognitive Impairment (MCI) serves as a precursor to Alzheimer's dementia (AD). Recent research underscores the relationship between mitochondrial dysfunction and amyloid beta accumulation, underscoring the prospect of targeting mitochondrial function for intervention. Consequently, our study aimed to explore the efficacy of transcranial photobiomodulation (tPBM), a novel non-invasive technique utilizing near-infrared light to activate mitochondrial cytochrome C oxidase receptors, thereby enhancing cellular energy in individuals with MCI.

View Article and Find Full Text PDF

Background: Anastomotic ulcers (AU) at the gastroenterostomy are a common postoperative complication after laparoscopic Roux-en-Y gastric bypass (LRYGB). Possible risk factors for ulcer formation include active smoking, the use of non-steroidal anti-inflammatory drugs, increased tension or ischemia at the anastomosis, or factors that increase the acid secretion of the gastric pouch. Therefore, a longer gastric pouch may increase risk of AU formation after LRYGB.

View Article and Find Full Text PDF

The neuropeptide oxytocin (OXT) and its receptor (OXTR) have been shown to play an important role in glucose metabolism, and pancreatic islets express this ligand and receptor. In the current study, OXTR expression was identified in α-, β-, and δ-cells of the pancreatic islet by RNA hybridization, and OXT protein expression was observed only in β-cells. In order to examine the contribution of islet OXT/OXTR in glycemic control and islet β-cell heath, we developed a β-cell specific OXTR knock-out (β-KO) mouse.

View Article and Find Full Text PDF

Current studies pictured the enteric nervous system and macrophages as modulators of neuroimmune processes in the inflamed gut. Expanding this view, we investigated the impact of enteric neuron-macrophage interactions on postoperative trauma and subsequent motility disturbances, i.e.

View Article and Find Full Text PDF