Arylative dearomatization forms quaternary stereocenters in cyclic systems with the concomitant introduction of an aromatic ring. Pd-catalyzed arylative dearomatization, which uses conditions analogous to cross-coupling, has emerged as a powerful method in an intramolecular context. But translating this from intramolecular cyclizations to an intermolecular process has proven extremely challenging: examples are scarce, and those that exist have not been rendered enantioselective, despite the potential for broad application in medicinal chemistry and natural product synthesis.
View Article and Find Full Text PDFHydrogen atom abstraction is an important elementary chemical process but is very difficult to carry out enantioselectively. We have developed catalysts, readily derived from the Cinchona alkaloid family of natural products, which can achieve this by virtue of their chiral amine structure. The catalyst, following single-electron oxidation, desymmetrizes -diols by selectively abstracting a hydrogen atom from one carbon center, which then regains a hydrogen atom by abstraction from a thiol.
View Article and Find Full Text PDFLiquid chromatography-triple quadrupole mass spectrometry (LC-MS-MS) assays are frequently utilized for screening and confirmatory purposes in the forensic toxicology laboratory. While these techniques are excellent for the targeted identification and quantitation of a wide variety of drug classes, validation and determining fit-for-purpose is a significant requirement for each method. In the USA, the American National Standards Institute and Academy Standards Board first edition of Standard 036 currently serves as a primary resource in forensic toxicology method validation and mandates that laboratories evaluate critical performance characteristics to help ensure the production of forensically defensible results.
View Article and Find Full Text PDFThis work describes highly enantioselective nitrene transfer to hydrocinnamyl alcohols (benzylic C-H amination) and allylic alcohols (aziridination) using ion-paired Rh (II,II) complexes based on anionic variants of Du Bois' esp ligand that are associated with cinchona alkaloid-derived chiral cations. Directed by a substrate hydroxyl group, our previous work with these complexes had not been able to achieve high enantioselectivity on these most useful short-chain compounds, and we overcame this challenge through a combination of catalyst design and modified conditions. A hypothesis that modulation of the linker between the anionic sulfonate group and the central arene spacer might provide a better fit for shorter chain length substrates led to the development of a new biaryl-containing scaffold, which has allowed a broad scope for both substrate classes to be realized for the first time.
View Article and Find Full Text PDF