Alzheimer disease is a neurodegenerative pathology-modifying mitochondrial metabolism with energy impairments where the effects of biological sex and DNA repair deficiencies are unclear. We investigated the therapeutic potential of dietary ketosis alone or with supplemental nicotinamide riboside (NR) on hippocampal intermediary metabolism and mitochondrial bioenergetics in older male and female wild-type (Wt) and 3xTgAD-DNA polymerase-β-deficient (3xTg/POLβ) (AD) mice. DNA polymerase-β is a key enzyme in DNA base excision repair (BER) of oxidative damage that may also contribute to mitochondrial DNA repair.
View Article and Find Full Text PDFAlcohol is among the most widely used psychoactive substances worldwide. Ethanol metabolites such as acetate, thought to be primarily the result of ethanol breakdown by hepatic aldehyde dehydrogenase 2 (ALDH2), contribute to alcohol's behavioural effects and alcoholism. Here, we show that ALDH2 is expressed in astrocytes in the mouse cerebellum and that ethanol metabolism by astrocytic ALDH2 mediates behavioural effects associated with ethanol intoxication.
View Article and Find Full Text PDFBecause of a decreased sensitivity toward insulin, a key regulator of pyruvate dehydrogenase (PDH), Alzheimer's patients have lower brain glucose utilization with reductions in Tricarboxylic Acid (TCA) cycle metabolites such as citrate, a precursor to n-acetyl-aspartate. In the 3xTgAd mouse model of Alzheimer's disease (AD), aging mice also demonstrate low brain glucose metabolism. Ketone metabolism can overcome PDH inhibition and restore TCA cycle metabolites, thereby enhancing amino acid biosynthesis.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
December 2019
Aldehyde dehydrogenase 2 (ALDH2), a key enzyme for detoxification the ethanol metabolite acetaldehyde, is recognized as a promising therapeutic target to treat alcohol use disorders (AUDs). Disulfiram, a potent ALDH2 inhibitor, is an approved drug for the treatment of AUD but has clinical limitations due to its side effects. This study aims to elucidate the relative contribution of different organs in acetaldehyde clearance through ALDH2 by using global- () and tissue-specific -deficient mice, and to examine whether liver-specific ALDH2 inhibition can prevent alcohol-seeking behavior.
View Article and Find Full Text PDF