Publications by authors named "R J P Koerver"

Researchers have been working for many years to find new material and cell systems that can be used as potential post-lithium-ion batteries. Among these, the all-solid-state battery is considered a promising candidate, with sulfide-based materials having essential advantages over other solid electrolyte materials, particularly in terms of their high ionic conductivity. A great challenge, however, is their high reactivity in contact with water, where harmful hydrogen sulfide (HS) is formed.

View Article and Find Full Text PDF

Low lithium-ion migration barriers have recently been associated with low average vibrational frequencies or phonon band centers, further helping identify descriptors for superionic conduction. To further explore this correlation, here we present the computational screening of ∼14,000 Li-containing compounds in the Materials Project database using a descriptor based on lattice dynamics reported recently to identify new promising Li-ion conductors. An efficient computational approach was optimized to compute the average vibrational frequency or phonon band center of ∼1,200 compounds obtained after pre-screening based on structural stability, band gap, and their composition.

View Article and Find Full Text PDF

A nondegrading, low-impedance interface between a solid electrolyte and cathode active materials remains a key challenge for the development of functional all-solid-state batteries (ASSBs). The widely employed thiophosphate-based solid electrolytes are not stable toward oxidation and suffer from growing interface resistance and thus rapid fading of capacity in a solid-state battery. In contrast, NASICON-type phosphates such as LiAl Ti(PO) and LiAl Ge(PO) are stable at high potentials, but their mechanical rigidity and high grain boundary resistance are thought to impede their application in bulk-type solid-state batteries.

View Article and Find Full Text PDF

The host-guest system TCNQ@CuBTC (TCNQ = 7,7,8,8-tetracyanoquinodimethane, BTC = 1,3,5-benzenetricarboxylate) is a striking example of how semiconductivity can be introduced by guest incorporation in an otherwise insulating parent material. Exhibiting both microporosity and semiconducting behavior such materials offer exciting opportunities as next-generation sensor materials. Here, we apply a solvent-free vapor phase loading under rigorous exclusion of moisture, obtaining a series of the general formula TCNQ@CuBTC (0 ≤ ≤ 1.

View Article and Find Full Text PDF

Solid-state batteries with inorganic solid electrolytes are currently being discussed as a more reliable and safer future alternative to the current lithium-ion battery technology. To compete with state-of-the-art lithium-ion batteries, solid electrolytes with higher ionic conductivities are needed, especially if thick electrode configurations are to be used. In the search for optimized ionic conductors, the lithium argyrodites have attracted a lot of interest.

View Article and Find Full Text PDF