Publications by authors named "R J Nelmes"

Using a combination of ab initio crystal structure prediction and neutron diffraction techniques, we have solved the full structure of KOH-VI at 7 GPa. Rather than being orthorhombic and proton-ordered as had previously be proposed, we find that this high-pressure phase of potassium hydroxide is tetragonal (space group I4/mmm) and proton disordered. It has an unusual hydrogen bond topology, where the hydroxyl groups form isolated hydrogen-bonded square planar (OH)4 units.

View Article and Find Full Text PDF

From a combination of powder and single-crystal synchrotron x-ray diffraction data we have determined the carbon substructure of phase B of methane at a pressure of ∼8 GPa. We find this substructure to be cubic with space group I4¯3m and 58 molecules in the unit cell. The unit cell has a lattice parameter a = 11.

View Article and Find Full Text PDF

A robust and comprehensive method for determining the orientation matrix of a single-crystal sample using the neutron Laue time-of-flight (TOF) technique is described. The new method enables the measurement of the unit-cell parameters with an uncertainty in the range 0.015-0.

View Article and Find Full Text PDF

We used the finite element method for stress and deformation analysis of the large sample volume double-toroidal anvil and gasket assembly used with the Paris-Edinburgh press for neutron scattering, in order to investigate the failure of this assembly observed repeatedly in experiments at a load of approximately 240 tonnes. The analysis is based on a new approach to modelling an opposed anvil device working under extreme stress conditions. The method relies on use of experimental data to validate the simulation in the absence of the material property data available for high pressure conditions.

View Article and Find Full Text PDF

Elemental barium adopts a series of high-pressure phases with such complex crystal structures that some of them have eluded structure determination for many years. Using single-crystal synchrotron X-ray diffraction and new data analysis strategies, we have now solved the most complex of these crystal structures, that of phase Ba-IVc at 19 GPa. It is a commensurate host-guest structure with 768 atoms in the representative unit, where the relative alignment of the guest-atom chains can be represented as a two-dimensional pattern with interlocking S-shaped 12-chain motifs repeating regularly in one direction and repeating with constrained disorder in the other.

View Article and Find Full Text PDF