Candidates for prostate-specific membrane antigen (PSMA)-targeted radioligand therapy (RLT) of metastatic castration-resistant prostate cancer (mCRPC) frequently have "mismatch" lesions with pronounced 18-fluorodeoxyglucose ([F]FDG) but attenuated PSMA ligand uptake on positron emission tomography (PET). However, no quantitative criteria yet exist to identify mismatch lesions and predict their response to RLT. To define such criteria, we retrospectively analyzed 267 randomly-selected glucometabolic mCRPC metastases from 22 patients.
View Article and Find Full Text PDFBackground: The state-of-the-art method for imaging men with biochemical recurrence of prostate cancer (BCR) is prostate-specific membrane antigen (PSMA)-targeted positron emission tomography/computed tomography (PET/CT) with tracers containing short-lived radionuclides, e.g., gallium-68 (Ga; half-life: ∼67.
View Article and Find Full Text PDF"Tumor sink effects", decreased physiological uptake of radiopharmaceuticals due to sequestration by a tumor, may impact radioligand therapy (RLT) toxicity and dosing. We investigated these effects with prostate-specific membrane antigen (PSMA)-targeted radiopharmaceuticals in the healthy organs-at-risk (the parotid glands, kidneys, liver, and spleen) of 33 patients with metastatic castration-resistant prostate cancer (mCRPC). We retrospectively performed three intra-individual comparisons.
View Article and Find Full Text PDF