Background And Purpose: Radiation-induced damage to the organs at risk (OARs) in head-and-neck cancer (HNC) patient can result in long-term complications. Quantitative magnetic resonance imaging (qMRI) techniques such as diffusion-weighted imaging (DWI), DIXON for fat fraction (FF) estimation and T mapping could potentially provide a spatial assessment of such damage. The goal of this study is to validate these qMRI techniques in terms of accuracy in phantoms and repeatability in-vivo across a broad selection of healthy OARs in the HN region.
View Article and Find Full Text PDFMotion is problematic during radiotherapy as it could lead to potential underdosage of the tumor, and/or overdosage in organs-at-risk. A solution is adaptive radiotherapy guided by magnetic resonance imaging (MRI). MRI allows for imaging of target volumes and organs-at-risk before and during treatment delivery with superb soft tissue contrast in any desired orientation, enabling motion management by means of (real-time) adaptive radiotherapy.
View Article and Find Full Text PDFRespiratory-correlated 4D-MRI can characterize respiratory-induced motion of tumors and organs-at-risk for radiotherapy treatment planning and is a necessity for image guidance of moving tumors treated on an MRI-linac. Essential for 4D-MRI generation is a robust respiratory surrogate signal. We investigated the feasibility of the noise navigator as respiratory surrogate signal for 4D-MRI generation.
View Article and Find Full Text PDFIn brain/head-and-neck radiotherapy (RT), thermoplastic immobilization masks guarantee reproducible patient positioning in treatment position between MRI, CT, and irradiation. Since immobilization masks do not fit in the diagnostic MR head/head-and-neck coils, flexible surface coils are used for MRI imaging in clinical practice. These coils are placed around the head/neck, in contact with the immobilization masks.
View Article and Find Full Text PDFPurpose: The noise navigator is a passive way to detect physiological motion occurring in a patient through thermal noise modulations measured by standard clinical radiofrequency receive coils. The aim is to gain a deeper understanding of the potential and applications of physiologically induced thermal noise modulations.
Methods: Numerical electromagnetic simulations and MR measurements were performed to investigate the relative contribution of tissue displacement versus modulation of the dielectric lung properties over the respiratory cycle, the impact of coil diameter and position with respect to the body.