We report here the role of one of the less studied members of the family of suppressors of cytokine signaling (SOCS), namely SOCS-7, in cytokine signaling. We demonstrate that SOCS-7 inhibits prolactin (PRL), growth hormone (GH), or leptin (LEP) signaling mediated through STAT3 and STAT5 in a dose-dependent manner. SOCS-7 also attenuated STAT3 and STAT5 signaling induced by overexpression of JH1, the catalytic subdomain of JAK2.
View Article and Find Full Text PDFTo test the hypothesis that some persistent organic pollutants contribute to the increased prevalence of allergic disease, the effects of selected compounds on cytokine production by PBMC from control and allergic donors were evaluated. Cells were cultured for six days in the presence of a xenobiotic (PCB 153, hexachlorobenzene, pentachlorobenzene, pentachlorophenol, lindane, atrazine or DMSO vehicle) with phytohemagglutinin (PHA) or Dermatophagoides pteronyssinus extract, then for one day in the presence of PHA + phorbol 12-myristate 13-acetate. PCB 153 reduced the levels of IL-10, IFN-gamma and TNF-alpha.
View Article and Find Full Text PDFTo understand the function of the suppressor of cytokine signaling (SOCS)-7, we have looked for proteins interacting with SOCS-7 in a stringent yeast two-hybrid screen of a human leukocyte cDNA-library. We identified the cytoskeletal molecule vinexin as a partner interacting with SOCS-7. Tests with deletion mutants of SOCS-7 demonstrated that a central region of the molecule containing several proline-rich regions, N-terminal to the SH2 domain, was responsible for the binding to vinexin.
View Article and Find Full Text PDFObjective: Macroprolactinemia, which can be detected by a polyethylene glycol (PEG) precipitation test, is a clinically and biologically heterogeneous condition. In this study, we analyzed whether the clinical presentation, the hormonal findings and the in vitro lactogenic activity differed between macroprolactinemic patients with and without circulating prolactin (PRL)-IgG complexes.
Design: Clinical data were reviewed and additional hormonal studies were performed in 50 hyperprolactinemic patients with macroprolactinemia.
To evaluate the possible role of prolactin (PRL) in T-lymphocytes, we monitored gene induction in one cytotoxic T-lymphocyte (CTL) clone derived from a patient with hemochromatosis and in several T-helper clones generated from a normal donor and a patient with multiple sclerosis. The CTL clone expressed conventional PRL receptor (PRLR), and PRL induced the expression of suppressor of cytokine signaling-3 (SOCS-3) and increased the expression of SOCS-2 and cytokine-inducible src homology-2 containing protein (CIS, another member of the SOCS family). As is the case in granulocytes, expression of a conventional receptor for PRL could not be shown by polymerase chain reaction analysis on three helper clones.
View Article and Find Full Text PDF