Background: Bok is a poorly characterized Bcl-2 protein family member with roles yet to be clearly defined. It is clear, however, that Bok binds strongly to inositol 1,4,5-trisphosphate (IP) receptors (IPRs), which govern the mobilization of Ca from the endoplasmic reticulum, a signaling pathway required for many cellular processes. Also known is that Bok has a highly conserved phosphorylation site for cAMP-dependent protein kinase at serine-8 (Ser-8).
View Article and Find Full Text PDFBackground: Long QT Syndrome Type-2 (LQT2) is due to loss-of-function variants. encodes K 11.1 that forms a delayed-rectifier potassium channel in the brain and heart.
View Article and Find Full Text PDFThe erlin1/erlin2 (E1/E2) complex is an endoplasmic reticulum membrane-located assemblage of the proteins erlin1 and erlin2. Here, we demonstrate direct and selective binding of phosphatidylinositol 3-phosphate (PI(3)P) to recombinant erlins and that disruption or deletion of the E1/E2 complex reduces HeLa cell PI(3)P levels by ∼50 %. This reduction correlated with a decrease in autophagic flux, with no effect on the endocytic pathway, and was not due to reduced VPS34 kinase activity, which is critical for maintaining steady-state PI(3)P levels.
View Article and Find Full Text PDFThe Jornada Basin Long-Term Ecological Research Site (JRN-LTER, or JRN) is a semiarid grassland-shrubland in southern New Mexico, USA. The role of intraspecific competition in constraining shrub growth and establishment at the JRN and in arid systems, in general, is an important question in dryland studies. Using information on shrub distributions and growth habits at the JRN, we present a novel landscape-scale (c.
View Article and Find Full Text PDFCoronaviruses (CoV), including SARS-CoV-2, modulate host proteostasis through the activation of stress-responsive signaling pathways such as the Unfolded Protein Response (UPR), which remedies misfolded protein accumulation by attenuating translation and increasing protein folding capacity. While CoV nonstructural proteins (nsps) are essential for infection, little is known about the role of nsps in modulating the UPR. We characterized the impact of overexpression of SARS-CoV-2 nsp4, a key driver of replication, on the UPR in cell culture using quantitative proteomics to sensitively detect pathway-wide upregulation of effector proteins.
View Article and Find Full Text PDF