Background: Osteoarthritis is a highly prevalent disease affecting the hip and knee joint and is characterized by load-mediated pain and decreased quality of life. Dependent on involved joint, patients present antalgic movement compensations, aiming to decrease loading on the involved joint. However, the associated alterations in mechanical loading of the ipsi- and contra-lateral lower limb joints, are less documented.
View Article and Find Full Text PDFOsteoarthritis is a common musculoskeletal disorder. Classification models can discriminate an osteoarthritic gait pattern from that of control subjects. However, whether the output of learned models (probability of belonging to a class) is usable for monitoring a person's functional recovery status post-total knee arthroplasty (TKA) is largely unexplored.
View Article and Find Full Text PDFThis study's aim is threefold: (I) Evaluate movement quality parameters of gait in people with hip or knee osteoarthritis (OA) compared to asymptomatic controls from a single trunk-worn 3D accelerometer. (II) Evaluate the sensitivity of these parameters to capture changes at 6-weeks, 3-, 6-, and 12-months following total knee arthroplasty (TKA). (III) Investigate whether observed changes in movement quality from 6-weeks and 12-months post-TKA relates to changes in patient-reported outcome measures (PROMs).
View Article and Find Full Text PDFOsteoarthritis (OA) is one of the leading musculoskeletal disabilities worldwide, and several interventions intend to change the gait pattern in OA patients to more healthy patterns. However, an accessible way to follow up the biomechanical changes in a clinical setting is still missing. Therefore, this study aims to evaluate whether we can use biomechanical data collected from a specific activity of daily living to help distinguish hip OA patients from controls and knee OA patients from controls using features that potentially could be measured in a clinical setting.
View Article and Find Full Text PDF